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“The NET effect”: Neutrophil extracellular 
traps—a potential key component 
of the dysregulated host immune response 
in sepsis
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Abstract 

Neutrophils release neutrophil extracellular traps (NETs) as part of a healthy host immune response. NETs physically 
trap and kill pathogens as well as activating and facilitating crosstalk between immune cells and complement. Exces-
sive or inadequately resolved NETs are implicated in the underlying pathophysiology of sepsis and other inflamma-
tory diseases, including amplification of the inflammatory response and inducing thrombotic complications. Here, we 
review the growing evidence implicating neutrophils and NETs as central players in the dysregulated host immune 
response. We discuss potential strategies for modifying NETs to improve patient outcomes and the need for careful 
patient selection.
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Background
Sepsis is characterised by a dysregulated host response to 
infection, leading to life-threatening organ dysfunction 
[1, 2]. With an estimated global incidence of 49 million 
cases and 11 million deaths annually, sepsis represents a 
significant public health challenge [2, 3]. Recent advance-
ments in our understanding of sepsis immunobiology 
have led to a more nuanced conceptualisation, incorpo-
rating immune-driven resistance, tolerance, resilience, 
resolution and repair [4].

Central to this evolving paradigm is the concept of 
immunothrombosis, a host defence mechanism that 
integrates the immune and coagulation systems to con-
tain and eliminate pathogens in the bloodstream [5, 
6]. This process involves the coordinated activation of 
multiple cellular and molecular components, including 
neutrophils, platelets, monocytes, the complement sys-
tem, damage-associated molecular patterns (DAMPs), 
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and coagulation factors [7, 8]. While immunothrombo-
sis serves a protective role under normal circumstances, 
excessive or uncontrolled activation can lead to wide-
spread thromboinflammation [8–11]. In addition, the 
role of DAMPs, host cellular constituents released from 
damaged or stressed cells, act as danger signals that trig-
ger inflammatory responses through pattern recognition 
receptors (PRRs), such as Toll-like receptors (TLR) and 
NOD-like receptors [12, 13]. However, excess DAMPs 
can also play an important role in amplifying and perpet-
uating the inflammatory response in sepsis and directly 
contributing to organ dysfunction [12, 14].

Neutrophil extracellular traps (NETs) composed of 
extruded nuclear chromatin decorated with histones and 
granular proteins, serve to trap and neutralise pathogens 
[15]. However, excessive NET formation and/or dysregu-
lated clearance have been implicated in exacerbating sep-
sis pathophysiology by promoting inflammation, tissue 
damage and thrombosis [16, 17]. The intricate balance 
between protective and detrimental properties under-
scores the complexity of the host response in sepsis. 
Understanding these mechanisms is crucial for develop-
ing targeted immunomodulatory therapies to improve 
patient outcomes [18]. This narrative review aims to:

1.	 Describe the growing evidence implicating neu-
trophils and NETs as central players in both host 
defence and the dysregulated immune response in 
sepsis

2.	 Explore the role of NETs in immunothrombosis and 
thromboinflammation

3.	 Discuss potential strategies for modifying NETs to 
improve patient outcomes.

By elucidating these complex interactions, we aim to 
provide insights into novel therapeutic approaches that 
can modulate the immune response and potentially miti-
gate tissue damage in sepsis and other systemic inflam-
matory conditions.

The history and discovery of NETs
Neutrophils play a critical role in the innate immune 
response to any inflammatory insult. However, they 
present unique challenges to study due to their intrin-
sic characteristics and to technical issues related to 
their investigation [19]. Our understanding of neutro-
phil pathobiology consequently lags well behind that of 
other immune cells. Neutrophils have a short lifespan, 
typically surviving 5–7 days in circulation, that is reduced 
once activated [20]. This short lifespan is beneficial for 
supporting a rapid response to infection but presents a 
significant obstacle for researchers attempting to isolate 
cells and expand them in vitro. Once isolated from blood, 

neutrophils remain viable for only a few hours, limiting 
the window for experimental manipulation and analysis. 
The process of isolating neutrophils also inadvertently 
activates them, altering their physiology and potentially 
confounding results [21]. Neutrophil activation triggers 
a variety of processes including degranulation and pro-
duction of reactive oxygen species (ROS) that can affect 
their function and interactions with other cell types [22, 
23]. This sensitivity means that even minor changes in 
isolation and handling techniques can lead to significant 
variability in experimental outcomes. Neutrophils also 
require the presence of other cells, in particular mono-
cytes and platelets, to facilitate their activation. This 
makes in  vitro study more complicated and harder to 
achieve consistency in experiments [21, 24]. Neutrophils 
also exhibit a surprising degree of functional heterogene-
ity, with subsets displaying distinct phenotypic and func-
tional profiles [25], the full extent of which is still being 
explored [23]. Such complexity adds another layer of 
investigative difficulty in view of the potential influence 
of these different subpopulations on experimental out-
comes. Neutrophils perform many of their key functions 
within tissues and not just in the bloodstream. Studying 
these cells in their native context requires sophisticated 
techniques such as intravital microscopy that are not 
universally available [26]. Ethical and technical consid-
erations also limit the extent to which invasive studies 
can be applied to humans to observe neutrophil behav-
iour under physiological and pathological conditions. 
Neutrophils only constitute 10–25% of circulating white 
cells in rodents [27], so direct transferability of findings 
is uncertain.

In 2004, Brinkmann et al. observed that activated neu-
trophils released their nuclear contents forming extra-
cellular fibres that could trap and kill bacteria (Fig.  1) 
[15]. This observation was initially met with scepticism 
as it challenged the conventional view of neutrophils as 
short-lived, primarily killing pathogens through phagocy-
tosis and degranulation [28]. In 2007, Fuchs et al. demon-
strated that NET formation was triggered by a novel form 
of active cell death, NETosis, which required generation 
of ROS by nicotinamide adenine dinucleotide phos-
phate oxidase (NADPH oxidase, NOX), a key enzyme 
in the neutrophil respiratory burst [29]. NET release is 
induced by a wide range of stimuli, for instance, bacteria, 
viruses, fungi and parasites; pro-inflammatory media-
tors such as interleukin (IL)−8, lymphotoxin-alpha and 
tumour necrosis factor alpha (TNFα); platelets, activated 
endothelial cells, and components of the complement 
system [24, 30, 31].

NETs are composed of a mix of chromatin, histones, 
nucleosomes and granular-derived components such as 
neutrophil elastase (NE), myeloperoxidase (MPO) and 



Page 3 of 18Retter et al. Critical Care           (2025) 29:59 	

cathepsin G [32, 33]. Both NE and cathepsin G are mul-
tifunctional neutrophil serine proteases with important 
roles in the inflammatory-immune response [33]. Their 
shared functions include: (i) antimicrobial properties that 
enable them to directly kill or inactivate pathogens [33, 
34]; (ii) extracellular matrix degradation to facilitate cell 
migration and tissue remodelling during inflammation 
[33, 35]; (iii) neutrophil recruitment to sites of inflamma-
tion or infection by inducing neutrophil activation and 
chemotaxis; and (iv) proteolytical regulation of cytokines, 
chemokines and other inflammatory mediators [33, 36]. 
Cathepsin G also activates platelets, contributing to 
thrombosis [33, 36]. The heme-containing enzyme MPO 
is expressed by neutrophils and plays a crucial role in the 
innate immune response. It catalyses production of chlo-
rinating oxidants, such as hypochlorous acid, facilitating 
oxidative killing of pathogens during phagocytosis [37, 
38]. MPO can also modulate inflammation independent 
of its enzymatic properties by regulating neutrophil func-
tion and NET formation [37]. Extracellular histones can 
directly activate platelets, promoting their pro-inflamma-
tory and pro-thrombotic functions [39]. In turn, activated 
platelets can trigger neutrophils to undergo NETosis [30], 
creating a positive feedback loop of inflammation and tis-
sue damage.

The process of NETosis is pivotal for trapping and neu-
tralising pathogens, preventing their spread, and facili-
tating their clearance [30]. However, dysregulated NET 
formation and clearance have been implicated in a broad 
spectrum of diseases, highlighting a paradoxical role in 
both defending against infection yet exacerbating disease 
pathology [40, 41]. Excessive or inadequately resolved 

NETs contribute to the pathology of chronic inflamma-
tory and autoimmune diseases by promoting inflamma-
tion, tissue damage and thrombosis [42]. For example, 
high levels and increased activity of cathepsin G have 
been linked to the pathogenesis of rheumatoid arthritis 
and systemic lupus erythematosus (SLE) [36]; uncon-
trolled NET activity has been implicated in acute res-
piratory distress syndrome (ARDS) [43]; while elevated 
plasma levels of MPO are frequently detected in patients 
with sepsis [37]. In the context of sepsis, uncontrolled 
NET formation exacerbates endothelial damage and can 
promote microvascular thrombosis [5, 8]. The persis-
tence of NET components can act as autoantigens, trig-
gering autoimmune responses in susceptible individuals 
[44]. Targeting NETs and their regulatory mechanisms 
presents a promising therapeutic avenue to modulate 
immune responses, mitigate tissue damage, and improve 
outcomes in a range of inflammatory and autoimmune 
diseases [45].

Mechanisms of NETosis
NETosis is induced by three distinct mechanisms: sui-
cidal, vital and mitochondrial NETosis (Fig.  2). Suicidal 
NETosis takes several hours to complete compared with 
the rapid mechanisms of vital and mitochondrial NETo-
sis that do not involve cell death [31, 46]. The distinction 
between these mechanisms has implications in sepsis. 
Suicidal NETosis can contribute to the depletion of neu-
trophils and can potentially lead to immunosuppres-
sion, a frequent problem in late-stage sepsis. Conversely, 
vital and mitochondrial NETosis allow neutrophils to 
continue their antimicrobial functions even after NET 

Fig. 1  Timeline showing the formation and release of NETs from an activated neutrophil. Min minute, NET neutrophil extracellular trap
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release. Notably, mitochondrial NETosis is a major 
source of extracellular mitochondrial DNA in the plasma 
of patients with sepsis; levels correlate with disease sever-
ity and are associated with poor clinical outcomes [47]. 
Understanding these mechanisms will be critical in 
developing targeted therapies for sepsis, aiming to bal-
ance the beneficial antimicrobial effects of NETs with the 
potential for tissue damage and inflammation.

NETosis as a primary source of DAMPs
NETosis is a significant source of extracellular nucle-
osomes and histones in sepsis [15, 40]. Hypoxia, oxidative 
stress and direct injury can lead to cellular damage [48]. 
This may result in necrotic, pyroptotic, and/or apoptotic 
cell death, with release of intracellular contents, including 

DNA, nucleosomes and histones, directly into the extra-
cellular space [49, 50]. Here they can exist freely, pack-
aged in extracellular vesicles, or as part of NETs [15, 17, 
40, 51, 52], and can by themselves act as DAMPs, exert-
ing profound effects on the immune system and coagula-
tion cascade [12, 14, 50, 51].

The overwhelming nature of sepsis may compromise 
the body’s ability to clear apoptotic cells and cellular 
debris efficiently, leading to the accumulation of extracel-
lular nucleosomes and histones. PRRs, particularly TLR2, 
TLR4 and TLR9, play a key role in recognising nucle-
osomes and histones as DAMPs [51, 53]. Extracellular 
histones directly bind to and activate TLR4 on immune 
cells, triggering nuclear factor kappa B-mediated sig-
nalling and production of pro-inflammatory cytokines, 

Fig. 2  Three different types of NETosis: suicidal, vital and mitochondrial. NET neutrophil extracellular trap. NETosis represents a specialised form 
of programmed cell death wherein neutrophils release NETs, complex structures composed of chromatin fibres, histones, and antimicrobial 
proteins. This process, first described by Brinkmann et al. [15], has emerged as a crucial mechanism in innate immunity and inflammation. Three 
distinct forms of NETosis have been identified: suicidal, vital, and mitochondrial NETosis. Suicidal NETosis, the classical pathway, involves a terminal 
process resulting in neutrophil lysis. This mechanism is characterised by chromatin decondensation, nuclear membrane breakdown, and mixing 
of nuclear contents with granular antimicrobial proteins [29]. The process typically requires 2–4 h and involves the generation of reactive oxygen 
species (ROS) through NADPH oxidase activation. Peptidylarginine deiminase 4 (PAD4) catalyses histone citrullination, facilitating chromatin 
decondensation. The final stage involves plasma membrane rupture and NET release, leaving behind a lysed neutrophil [40]. Vital NETosis, 
in contrast, represents a rapid response mechanism occurring within 30–60 min, wherein neutrophils remain viable and retain their antimicrobial 
functions after NET release [187]. This process, often triggered by bacterial components or inflammatory stimuli, involves the expulsion of nuclear 
DNA through vesicular transport while maintaining plasma membrane integrity. The resulting anuclear neutrophils continue to perform essential 
functions such as phagocytosis and chemotaxis, representing an evolutionary adaptation that preserves neutrophil functionality while deploying 
NETs [188]. Mitochondrial NETosis represents a distinct pathway characterised by the release of mitochondrial rather than nuclear DNA. This 
mechanism, first reported by in 2009 [189], occurs in response to specific stimuli and results in neutrophils lacking mitochondria but maintaining 
nuclear integrity. The process involves selective packaging of mitochondrial DNA with antimicrobial proteins, followed by their controlled release. 
This form of NETosis may represent a less destructive response mechanism compared with suicidal NETosis. The figure illustrates these three distinct 
NETosis pathways, highlighting their unique characteristics and outcomes. The top panel shows suicidal NETosis, resulting in complete cell lysis 
and NET release. The middle panel depicts vital NETosis, where the neutrophil remains intact as an anuclear cell following NET release. The bottom 
panel illustrates mitochondrial NETosis, showing the selective release of mitochondrial DNA while maintaining cellular integrity
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TNF-α, IL-1β and IL-6 (Fig. 3) [54, 55]. Histones may act 
synergistically with other TLR ligands, such as lipopoly-
saccharide, to enhance inflammatory responses [56]. His-
tones can also induce activation of the NOD-, LRR- and 
pyrin domain-containing protein 3 (NLRP3) inflamma-
some, a macromolecular protein complex and key regu-
lator of the innate immune response [57, 58]. Canonical 
NLRP3 inflammasome activation occurs in two stages 
[59, 60]. The initial priming signal can arise from DAMP-
stimulated TLR-mediated signalling, inducing the upreg-
ulation of NLRP3 and pro-inflammatory cytokines [59, 
61]. DAMPs can also trigger the second ‘hit’ required for 
NLRP3 inflammasome assembly and activation, leading 
to caspase-1 stimulation and IL-1β release, by activating 
multiple upstream events [59, 61, 62]. Release of IL-1β 
further amplifies the inflammatory response in sepsis, 
contributing to organ dysfunction.

Excessive NET formation with subsequent release of 
DAMPs can lead to tissue damage, organ dysfunction 
and the perpetuation of the inflammatory response, 
contributing to the pathogenesis of inflammatory and 
autoimmune diseases including sepsis, acute lung injury, 
and SLE [51, 63]. A recent study by Malamud et  al. 

demonstrated that myeloid inhibitory C-type lectin-
like receptor (MICL/CLEC12A) regulates NET forma-
tion by directly recognising NET-associated DNA. The 
researchers found that MICL deficiency or inhibition 
leads to uncontrolled NET formation through the ROS-
PAD4 pathway, creating an auto-inflammatory feedback 
loop [64]. Loss of MICL functionality exacerbated joint 
inflammation in rheumatoid arthritis models. MICL acts 
as a PRR for NETs on neutrophils, inhibiting further neu-
trophil activation and NET formation upon recognition. 
Of note, the authors detected similarly inhibitory anti-
MICL autoantibodies in patients with lupus and severe 
coronavirus disease 2019 (COVID-19).

NETs play a central role in the innate immune 
response and immunothrombosis
In addition to their crucial role in trapping and kill-
ing pathogens, NETs coordinate immune responses 
via their interactions with immune cells and mediators 
[40]. For example, NETs activate plasmacytoid dendritic 
cells by engaging TLR9 on the cell surface and stimulat-
ing production of type I interferons (IFNs). Type I IFNs 
are critical for activating the adaptive immune response, 

Fig. 3  The role of histones and nucleosomes in the dysregulated host immune response. Apoptosis, necrosis and NETosis are all sources 
of extracellular histones. During infection NETosis is the predominant source of histones and nucleosomes (> 80%). Histones are strongly cationic 
and directly toxic to cell membranes. This promotes endothelial dysfunction and activation of platelets and neutrophils. Neutrophils, platelets 
and complement are all directly activated by histones, leading to a forward positive feedback loop. Histones can also directly activate other immune 
cells through interactions with TLR2 and 4, activating the pro-inflammatory mitogen-activated protein kinase (MAPK) and NLRP3 inflammasome. 
This figure is a reproduction and adaption from [51] under the Creative Commons Attribution 4.0 International License, (https://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/) with permission from E Silk. DAMPs damage-associated molecular patterns, MAPK mitogen-activated protein kinase, NF-κB 
nuclear factor kappa B, NLRP3 NOD-, LRR- and pyrin domain-containing protein 3, TLR toll-like receptor

https://creativecommons.org/licenses/by/4.0/
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including antigen-specific T- and B-cell responses [65, 
66]. In  vitro NETs activate T cells directly by lowering 
their activation threshold and inducing co-stimulatory 
signalling [67]. They also interact with macrophages, 
promoting cytokine release and amplifying the immune 
response [68]. These interactions highlight the cen-
tral role of NETs in orchestrating the complex interplay 
between innate and adaptive immunity [69]. Consid-
erable crosstalk exists between neutrophils and mac-
rophages. In sepsis, macrophage pyroptosis, a highly 
inflammatory form of lytic-programmed cell death reg-
ulates NET formation. Pyroptotic macrophage-derived 
microvesicles cause tissue damage and can activate 
coagulation pathways [70]. While neutrophils can endo-
cytose pyroptotic microvesicles containing macrophage 
mitochondria, this induces neutrophil mitochondrial 
dysfunction and further NET formation via the mito-
chondrial ROS/Gasdermin D axis [70]. Damage to the 
endothelium during sepsis may also be driven by the abil-
ity of activated endothelial cells to induce NET formation 
and their susceptibility to NET-mediated cell death [71]. 
This endothelial damage is a key component of thrombo-
inflammation, contributing to microvascular dysfunction 
and organ failure in sepsis [72].

Another important aspect of NET function is their role 
in complement activation. Complement components 
such as properdin, C3 and factor B have been found 
deposited on NETs [7, 73, 74]. Together with NET-asso-
ciated granular proteins and DAMPs, these are responsi-
ble for NET-mediated complement activation [7, 73, 74]. 
Extracellular histones and nucleosomes induce comple-
ment activation via interactions with PRRs on the surface 
of immune cells [51]. Additional NET formation can be 
triggered by C3a and C5b, propagating the complement 
pathway further [7, 75]. C1q, the recognition molecule of 
the classical complement pathway, can bind directly to 
NETs. This binding is facilitated by the positively charged 
globular heads of C1q interacting with the negatively 
charged DNA backbone of NETs. C1q-opsonised NETs 
are more efficiently phagocytosed by macrophages, aid-
ing in the clearance of NETs and potential pathogens 
trapped within them, reducing the potential for NET-
mediated tissue damage [76]. The interaction between 
NETs and complement proteins can create a positive 
feedback loop, enhancing local inflammation, immune 
responses and procoagulant activities.

NETs, complement and thrombosis
Through their dual role in pathogen capture and the 
promotion of thrombosis, NETs help to orchestrate 
immunothrombosis; a process that is both protec-
tive but potentially harmful in various disease states 
[5]. They contribute to thrombin generation through 

several mechanisms, including activation of the intrinsic 
coagulation pathway, inactivation of endogenous anti-
coagulants, and provision of a scaffold for the assembly 
of coagulation factors [77]. In addition, nucleosome and 
histone components also play a significant role in the 
dysregulated coagulation observed in sepsis.

Coagulation and thrombin formation can be promoted 
by the histone component of NETs, inducing platelet 
activation and aggregation via TLR2- and TLR4-medi-
ated pathways [56]. Histone-induced platelet activation 
results in the exposure of phosphatidylserine on the 
platelet surface, providing a procoagulant surface [56, 
78]. Increased platelet activation directly enhances and 
propagates thrombin generation, leading to a feed-for-
ward loop supporting further platelet activation. Besides 
platelets, histones can induce surface expression of phos-
phatidylserine on red blood cells in  vitro, supporting 
prothrombinase activity and shortening clotting times in 
plasma [79]. Histones also have the capacity to inactivate 
endogenous anticoagulants, such as tissue factor (TF) 
pathway inhibitor and thrombomodulin, promoting fur-
ther thrombin generation and suppression of protein C 
activation [80, 81].

Excessive NET release triggers thrombin generation by 
activating the intrinsic coagulation pathway [82] through 
exposure of negative charges on damaged cells or foreign 
surfaces [83]. This excessive NET formation and subse-
quent activation of coagulation cascades is a hallmark of 
thromboinflammation, where the protective functions of 
immunothrombosis become dysregulated [10]. Circulat-
ing free nucleosomes, released during excessive NETosis 
provide the negative charge that can directly activate fac-
tor XII (FXII) [7, 84]. Activation of FXII by nucleosomes 
generates FXIIa which subsequently activates FXI (Factor 
XI) and FIX (Factor IX). Activation of FIX leads to for-
mation of the tenase complex (FIXa-FVIIIa) which acti-
vates FX [85]. FXa then forms a prothrombinase complex 
with FVa, leading to thrombin generation. The negatively 
charged DNA backbone of NETs can therefore bind and 
concentrate coagulation factors, facilitating their activa-
tion and the formation of the tenase and prothrombinase 
complexes (Fig. 4) [86]. This NET-mediated assembly of 
coagulation factors contributing to thrombosis develop-
ment occurs independently of the platelet or erythrocyte 
surface [87].

There is evidence that nucleosomes, NET-associated 
histones and free histones can initiate and propagate the 
extrinsic coagulation pathway. Extracellular histones can 
disrupt the integrity of the endothelial barrier, exposing 
the procoagulant subendothelial matrix to circulating 
factors [84, 88]. They can also induce endothelial expres-
sion of TF via TLR4- and TLR2-mediated signalling, 
leading to autoactivation of FVII-activating protease [89, 
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90]. Histone-induced endothelial activation also pro-
motes the release of von Willebrand factor from endothe-
lial cells, enhancing platelet adhesion and aggregation 
[91]. The involvement of NETs and associated DAMPs in 
both intrinsic and extrinsic coagulation pathways exem-
plifies how NETs serve as a critical link between innate 
immunity and coagulation in immunothrombosis [84, 
86].

NETosis has been implicated in coagulopathies asso-
ciated with conditions such as sepsis, COVID-19 and 
autoimmune disorders (SLE, antiphospholipid syndrome 
[APS]) [6, 41, 92]. These conditions represent states of 
excessive thromboinflammation [93]. In sepsis, excessive 
NET formation has been associated with the develop-
ment of sepsis-induced coagulopathy and multiple organ 

failure [94, 95]. NETs contributed to the hypercoagulable 
state in patients with COVID-19, potentially explaining 
the high incidence of thrombotic complications in severe 
cases [96]. In SLE and APS, NETs are implicated in the 
development of thrombosis and cardiovascular disease 
in affected individuals [97]. Their role in cardiovascular 
disease has been reviewed in detail by Stark and Mass-
berg [8]. The most extreme form of systemic coagulopa-
thy, disseminated intravascular coagulation, is associated 
with severe bacterial infections [9, 98, 99]. Sepsis-induced 
coagulopathy develops in about 35% of sepsis cases [9]. 
Understanding the role of NETs in these pathological 
states of thromboinflammation is crucial for developing 
targeted therapies to modulate the immune response and 
improve patient outcomes [100].

Fig. 4  Pathogenic invasion of a pulmonary capillary, illustrating the link between thrombin generation, complement and NETs. Infection 
of endothelial cells disrupts the basement membrane, stimulating cell-surface expression of TF and P-selectin and, therein, the recruitment 
of neutrophils and platelets. Activation of complement promotes further activation of platelets and neutrophils. Platelets are activated by both the 
classical and alternative complement pathways. C3b can directly bind to and activate neutrophils. Neutrophils have additional receptors for C5a 
and C3a. Platelets can activate neutrophils directly by P-selectin glycoprotein ligand-1 (PSGL-1). NETs catch and bind platelets providing a scaffold 
to further support thrombin generation and the recruitment of immune cells. Monocytes detect the invading pathogen and are recruited 
to the site of endothelial damage/disruption. TF-bearing microvesicles released by macrophages become ensnared in the NETs. The negative 
charge of the NETs activates FXII, initiating the intrinsic pathway of coagulation that results in further thrombin generation. Finally, histones in NETs 
antagonise the action of the natural anticoagulants, thrombomodulin and activated protein C. As NETs can extend over 50 μm, with the normal 
diameter of a pulmonary capillary being 20–30 μm, there is a potential risk of complete obstruction of the microcirculation. This figure 
is a reproduction and adaption from [7] under the Creative Commons Attribution 4.0 International License, (https://​creat​iveco​mmons.​org/​licen​ses/​
by/4.​0/) with permission from E.L.G Pryzdial. AT antithrombin, FXII factor XII, HK high molecular weight kininogen, NET neutrophil extracellular trap, 
P properdin, PKa kallikrein, PRR pattern recognition receptor, P-selectin platelet selectin, PSGL-1 P-selectin glycoprotein ligand-1, TF tissue factor, TM 
thrombomodulin, tPA tissue-type plasminogen activator

https://creativecommons.org/licenses/by/4.0/
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The complement system and NETs engage in bidi-
rectional interactions that can amplify inflammatory 
responses following trauma. Complement activation, 
particularly through C5a-C5aR signalling, triggers NET 
formation via NADPH oxidase-dependent ROS genera-
tion and peptidylarginine deiminase 4 (PAD4)-mediated 
histone citrullination [15, 87]. In turn, NETs activate 
complement through multiple mechanisms: extruded 
DNA and histones serve as platforms for C1q binding 
to initiate the classical pathway, while NET-associated 
proteases can directly cleave C3 and C5 to generate ana-
phylatoxins [74]. This creates a potentially harmful posi-
tive feedback loop in trauma patients, as NET-induced 
complement activation recruits additional neutrophils 
and promotes further NET formation, potentially con-
tributing to organ dysfunction. Therapeutic strate-
gies targeting this axis show promise—C5a inhibition 
reduces NET formation in experimental models, while 
DNase treatment both degrades NETs and limits comple-
ment activation [101, 102]. While this complement-NET 
interaction represents a key mechanism linking innate 
immunity and inflammation in trauma, further research 
is needed to fully characterise the spatial and temporal 
dynamics of these interactions and optimise therapeutic 
approaches.

Some microorganisms subvert the antimicrobial 
properties of NETs
While NETs play a crucial role in the innate immune 
response against invading microorganisms, some patho-
gens have evolved strategies that can manipulate NETs 
to enhance their survival and increase pathogenicity 
(Table  1) [4, 103–117]. These strategies include evading 
NET capture, resisting NET-mediated killing, degrading 
NETs, and exploiting NETs for enhanced virulence [111, 
118–120]. To evade NET capture some pathogens have 
evolved surface modifications that reduce NET bind-
ing, allowing them to escape entrapment and destruc-
tion [111]. For example, Streptococcus pneumoniae has a 
negatively charged polysaccharide capsule that creates an 
electrostatic repulsion with the negatively charged DNA 
backbone of NETs, thereby preventing entrapment [112, 
121]. Similarly, Klebsiella pneumoniae produces a capsule 
that inhibits NET formation and reduces bacterial cap-
ture [122]. Other bacteria modify their surface proteins 
to evade NET capture [103]. Microorganisms can also 
work cooperatively, forming biofilms that act as physi-
cal barriers, preventing neutrophil infiltration and NET 
formation [118, 120, 123]. Others have developed mecha-
nisms to resist the antimicrobial effects of NETs, enabling 
them to survive and propagate within these structures 
[124]. Many bacteria produce nuclease enzymes or hijack 
host DNases to degrade and destroy the DNA backbone 

of NETs [104, 105, 112, 120, 125]. These include Strepto-
coccus pyogenes which secretes DNase Sda1 and Staphy-
lococcus aureus which induces release of host DNases 
[106, 120]. In contrast, LasR-deficient Pseudomonas aer-
uginosa, Yersinia pestis, and Bordetella pertussis strains 
reduce or prevent NET formation [116, 126, 127]. In 
Mycobacterium tuberculosis infections, NET formation 
in tuberculosis lesions may contribute to tissue damage 
and exacerbate inflammation, potentially facilitating bac-
terial dissemination and disease progression [127]. The 
mechanisms employed by microorganisms to manipulate 
NETs and their consequences for pathogenicity and sur-
vival are summarised in Table 1.

Future strategies to manipulate NETs and improve 
patient outcomes
The pathological impact of excessive or dysregulated 
NET formation offers potential therapeutic targets for a 
range of conditions such as sepsis, thrombosis and auto-
immune disorders. Recognising that NETs and associ-
ated DAMPs are critical mediators of inflammation and 
coagulopathy in sepsis has opened new avenues for ther-
apeutic interventions. Key therapeutic strategies include 
inhibition of NET formation, promotion of specific NET 
degradation and targeting specific NET components 
(Table 2) [128–146].

Inhibition of NET formation
NET formation can be inhibited by targeting molecular 
pathways underlying NETosis, but whether partial or 
full inhibition of NET formation should be targeted still 
needs to be considered. Potential inhibitors of NET for-
mation include small molecules, peptides and antibodies. 
PAD4 is a key enzyme in the NETosis pathway that catal-
yses histone citrullination leading to chromatin decon-
densation and NET formation [128]. Inhibition of PAD4 
reduced NET formation both in vitro and in vivo [147]. 
Cl-amidine, a small-molecule PAD4 inhibitor, attenu-
ated NET formation and improved outcomes in animal 
models of sepsis, thrombosis and autoimmune diseases 
[129–131]. GSK484, another PAD4 inhibitor, was well 
tolerated in a phase 1 clinical trial in healthy volunteers 
[132]. However, the efficacy of PAD4 inhibitors in human 
disease remains to be determined. Long-term inhibition 
of PAD4 may also have unintended consequences on 
other cellular processes, such as gene regulation and cell 
differentiation [148].

NOX, a key enzyme in the generation of ROS, is essen-
tial for NET formation [29]. Inhibition of NOX reduced 
NET formation both in  vitro and in  vivo [149]. Diphe-
nylene iodonium (DPI), a non-specific NOX inhibi-
tor, inhibited NET formation in models of sepsis and 
lupus nephritis. However, DPI has off-target effects and 
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can inhibit other flavoenzymes, limiting its therapeutic 
potential [133]. More specific NOX inhibitors, such as 
GSK2795039 and APX-115, show promise in preclini-
cal studies [134–136]. Nevertheless, the potential risks 
of NOX inhibition should be considered, as ROS play 
important roles in host defence and cell signalling [150].

Promotion of NET degradation
Another therapeutic strategy is to promote NET deg-
radation, either by enhancing activity of endogenous 
DNases or by administering such enzymes exogenously. 
Recombinant human DNase I (rhDNase I) degrades 
NETs [151]. Improved outcomes were seen in animal 
models of sepsis, acute lung injury and autoimmune dis-
eases following administration of rhDNase  I [151–153]. 
In humans, rhDNase I (dornase alfa) is approved for the 
treatment of cystic fibrosis where it reduces sputum vis-
coelasticity and improves lung function [137, 154, 155]. 
rhDNase I showed preclinical effectiveness against severe 
acute respiratory syndrome coronavirus 2 infection [151]. 
However, the efficacy of this therapy in other conditions 
associated with excessive NET formation remains to be 
established. Recent research has highlighted DNase’s 
potential in treating thrombotic conditions, where NETs 
play a crucial role in promoting thrombosis [40]. Stud-
ies have demonstrated that NETs provide a scaffold for 
platelet adhesion and activation, contributing to throm-
bus formation. DNase has shown promise in treating 
thrombosis by degrading NET structures that promote 
blood clot formation. Clinical studies found DNase treat-
ment reduced thrombus size and improved outcomes in 
conditions like deep vein thrombosis [156]. In experi-
mental models, recombinant human DNase prevented 
thrombosis and reduced mortality [157, 158].

The therapeutic potential of DNase extends beyond its 
direct NET-degrading properties. Research suggests that 
DNase treatment may modulate inflammatory responses 
by reducing the availability of NET-associated DAMPs 
[159]. This reduction in inflammatory stimuli could con-
tribute to breaking the cycle of chronic inflammation 
observed in many NET-associated pathologies. How-
ever, challenges remain in optimising DNase therapy 
[160]. The timing of administration, delivery methods, 
and potential combination with other therapeutic agents 
require further investigation. Potential risks of rhDNase I 
treatment, such as the development of anti-DNase anti-
bodies and the impairment of host defence, need to be 
considered.

Endogenous DNases, such as DNase1 and DNase1-
like 3, play a crucial role in NET degradation [161]. Defi-
ciency or inhibition of these DNases is associated with 
accumulation of NETs and development of autoimmune 
diseases such as SLE [162]. Enhancing activity of endog-
enous DNases may represent another therapeutic strat-
egy to promote NET degradation. C1q, a component 
of the complement system, enhances DNase1 activity 
and facilitates NET degradation [76]. Administration of 
C1q reduced NET accumulation and attenuated disease 
severity in animal models of SLE [138]. However, the 
therapeutic potential of C1q in human diseases remains 
to be investigated and the potential risks of modulating 
the complement system should be considered [163].

DNase has been administered through several routes 
across different clinical contexts. The most established 
approach is inhaled or nebulised DNase (dornase alfa/
Pulmozyme), which is primarily used in respiratory con-
ditions like cystic fibrosis, bronchiolitis and COVID-
19, delivered via nebuliser directly to airways without 

Table 2  Potential anti-NET therapeutics

APC activated protein C, DPI diphenyleneiodonium, MPO myeloperoxidase, NADPH nicotinamide adenine dinucleotide phosphate, NE neutrophil elastase, NET 
neutrophil extracellular trap, NOX NADPH oxidase, PAD4 peptidylarginine deiminase 4, rhDNase I recombinant human DNase I, UFH unfractionated heparin

Therapeutic strategy Agent or device Description References

Inhibition of NET formation Cl-amidine Small-molecule PAD4 inhibitor [129–131]

GSK484 Reversible, selective PAD4 inhibitor [132]

DPI Small-molecule, non-specific NOX inhibitor [133]

GSK2795039 Small-molecule NOX 2 inhibitor [134]

APX-115 Specific NOX inhibitor [135, 136]

Promotion of NET degradation Dornase alfa (rhDNase I) NET DNA [137]

C1q DNase 1 [138]

Targeting NET components AZD3241 Small-molecule selective and irreversible MPO inhibitor [140]

Sivelestat Small-molecule NE inhibitor [128, 141–143]

3D2D-APC, 3D2D2A-APC Rationally designed recombinant protein variants of APC [174]

M6229 Low-anticoagulant fraction of unfractionated heparin (UFH) [139]

NucleoCapture™ Therapeutic apheresis device that selectively removes NETs from blood [144–146]
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systemic absorption [164, 165]. In experimental settings, 
particularly in mouse models, DNase has been admin-
istered through intraperitoneal (IP) injection demon-
strating that DNase at doses around 20 mg/kg could be 
effective, with timing being a crucial factor; administra-
tion at 4 or 6  h post-infection showed better outcomes 
than immediate treatment [152]. Intratracheal (IT) 
administration has also been studied in experimental 
models, with direct instillation into the trachea. Lefran-
çais et  al. (2018) used this method in their research, 
administering doses of 2,000–4,000 units at regular 
intervals of 8–10  h [155]. The timing of administration 
appears crucial to therapeutic success, with evidence sug-
gesting that delayed administration (4–6  h after infec-
tion) may be more beneficial than immediate treatment 
in some contexts [152]. While human trials have primar-
ily focused on inhaled DNase, intravenous administration 
remains largely experimental, requiring further research 
to establish optimal protocols and safety parameters.

Targeting NET components
As described above, NETs comprise many components, 
including nucleosomes, histones, MPO and NE, which 
contribute to NET-mediated pathology [166]. Targeting 
these components may also be potentially advantageous, 
for example, histones exert cytotoxic and pro-inflamma-
tory effects [53]. Neutralisation of histones with antibod-
ies or small molecules (e.g., M6229, a low-anticoagulant 
fraction of unfractionated heparin) attenuated NET-
mediated tissue damage and improved outcomes in ani-
mal models of sepsis, trauma and autoimmune diseases 
[139, 167]. A phase 1 study (NCT05208112) of M6229 
in critically ill adults with sepsis has recently been com-
pleted [168]. The potential risks of modulating histone 
functions, such as impaired host defence and altered gene 
regulation, should be considered. MPO, a key enzyme 
in the generation of hypochlorous acid, is a potent oxi-
dant [169], contributing to the antimicrobial and pro-
inflammatory effects of NETs [170]. Inhibition of MPO 
reduced NET formation and attenuated NET-mediated 
tissue damage both in vitro and in vivo [171]. AZD3241, 
a small-molecule MPO inhibitor, has been evaluated 
in clinical trials for the treatment of neurodegenerative 
brain disorders [140]. However, their efficacy in NET-
associated pathologies remains to be investigated and 
the potential risks of MPO inhibition, such as increased 
susceptibility to infection, should be considered [37]. 
Activated protein C (APC) can cleave histone H3, reduc-
ing their cytotoxicity [172]. However, due to the antico-
agulant properties of APC and increased risk of bleeding, 
recombinant APC is no longer used therapeutically [173]. 
Two APC variants (3D2D-APC and 3D2D2A-APC) were 
designed with reduced anticoagulant activity and shown 

to have increased binding for H3 and proteolytic activity, 
reducing its cytotoxic effects on endothelial cells [174]. 
NE, a serine protease that contributes to the proteolytic 
activity of NETs, has been implicated in the pathogenesis 
of various inflammatory and autoimmune diseases [33]. 
Sivelestat, a small-molecule NE inhibitor, reduced NET 
formation and attenuated NET-mediated tissue damage 
both in  vitro and in  vivo [128, 141]. Sivelestat has been 
investigated clinically for treatment of acute lung injury 
and ARDS [142, 143] but its efficacy and potential risks, 
such as impaired host defence, in other NET-associated 
diseases remains to be determined [175]. The administra-
tion of DNase may reduce circulating nucleosome levels, 
and as discussed previously, has been shown to degrade 
NETs [151] and reduce organ damage in animal mod-
els of sepsis [152]. An alternative to a pharmacological 
approach is extracorporeal removal of NETs. NucleoCap-
ture™ therapeutic plasmapheresis utilises histone H1.3 
protein as a selective DNA adsorber to remove NETs 
from blood. It improved organ function and survival in 
a porcine model of sepsis [144, 145] and has been given 
to patients with sepsis in a pilot study (NCT04749238) 
[146]. The potential anti-NET therapeutics are summa-
rised in Table 2.

Biomarkers of NETs
Prompt diagnosis and treatment are crucial for ensuring 
the best outcomes for patients with sepsis. As NETs are 
an important part of the immune response, care needs 
to be taken when selecting treatments, as blocking or 
disrupting low levels of NETs could, as with any immu-
nomodulatory agent, have the potential for increased 
susceptibility to opportunistic infections. The ‘current’ 
recommended ‘gold standard’ for NET visualisation 
remains fluorescence microscopy utilising DNA stains 
combined with immunofluorescence staining for specific 
markers, including histone H3, neutrophil elastase, and 
myeloperoxidase [40]. The microscopic analysis should 
be complemented by cell-free DNA quantification and 
nucleosome detection [176]. The accurate, reproducible, 
quantifiable and translational diagnosis of NETosis is 
being worked on by the International Society of Throm-
bosis and Haemostasis. This is a critical step in inform-
ing and enabling the standardisation and comparison of 
further studies.

A range of tools can be used to detect and quantify 
NET formation and the most common techniques have 
been reviewed in detail by Stoimenou et al. [177]. These 
include immunoassays such as enzyme-linked immuno-
sorbent assay (ELISA) and Western blot, flow cytometry-
based techniques and microscopy methods. ELISA is the 
most used, objective and quantitative method for moni-
toring NETs, due to its low cost and simplicity, although 
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standardisation remains a challenge [177–179]. These 
tools are used in combination with NETs biomarkers 
such as, histones, NE, MPO, cell-free DNA, nucleosomes, 
and their complexes [178, 180]. However, discussion 
remains about the most suitable NET marker to use as a 
diagnostic, risk stratifier or prognostic tool. Several vali-
dated commercial ELISA tests and in-house protocols 
are currently available for detecting NETs, using serum 
or plasma levels of MPO-DNA complex, histones, and 
nucleosomes as surrogate markers [177–179, 181, 182]. 
Clinical data suggest that these circulating biomark-
ers may be associated with the presence and severity of 
thrombosis and sepsis, and correlate with hypercoagula-
bility, mortality and organ damage [178, 180, 183, 184]. 
There is currently no consensus regarding biomarker 
thresholds for quantifying the presence of NETs in sep-
sis. Larger clinical trials are needed to confirm the utility 
of NETs biomarkers in clinical practice and specifically to 
guide interventions targeting NETs.

Conclusion
NETs and associated DAMPs are crucial players in immu-
nothrombosis, a physiological process that links innate 
immunity with thrombosis to contain and eliminate 
pathogens [5, 6, 8]. When dysregulated, this process can 
lead to thromboinflammation, contributing to the patho-
genesis of sepsis and other inflammatory conditions [5]. 
Excessive release or inadequate removal of NETs can lead 
to the development and progression of sepsis [10]. There-
fore, manipulating NETs represents a promising thera-
peutic strategy for sepsis and other conditions associated 
with excessive or dysregulated NET formation. Impor-
tantly, modulating NET formation and function may also 
help balance the beneficial aspects of immunothrombo-
sis with the detrimental effects of thromboinflammation 
[185]. Potential approaches include inhibiting NET for-
mation, promoting NET degradation and targeting NET 
components. While these approaches have shown prom-
ise in preclinical studies, their clinical efficacy and safety 
need to be established in humans.

Recent research has focused on targeting specific 
pathways involved in immunothrombosis and throm-
boinflammation, such as the interaction between NETs 
and the complement system [186]. The development of 
NET-targeting therapies faces several challenges such as 
the heterogeneity of NETs, potential off-target effects of 
inhibitors, and the risk of impairing host defences. There-
fore, a deeper understanding of the molecular mecha-
nisms underlying NET formation and regulation, as well 
as the identification of specific targets and biomarkers, 
will be crucial for successful translation of NET-targeting 
therapies into clinical practice. Moreover, the potential 
risks and benefits of each approach should be carefully 

evaluated and guided by specific biomarkers of disease 
severity. Future research should aim to develop therapies 
that can selectively modulate NET function in thrombo-
inflammation, potentially leading to more effective treat-
ments for sepsis and related disorders.
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