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Simple Summary: The early detection of lung cancer is crucial for improving patient
outcomes, but current methods are limited. This research aims to enhance the identification
of malignant lung nodules using a blood test that assesses nucleosome levels and histone
modifications. By analyzing blood samples from over 800 patients with lung nodules
larger than 5 mm, the researchers developed a model to distinguish between malignant
and benign nodules. The model showed high accuracy, particularly in smaller nodules,
and was effective in a high-risk patient group. This new method could provide a reliable,
non-invasive alternative for detecting lung cancer at an early stage, offering a promising
tool for clinical use and improving patient care.

Abstract: Background/Objectives: Accurate non-invasive tests to improve early detection
and diagnosis of lung cancer are urgently needed. However, no regulatory-approved blood
tests are available for this purpose. We aimed to improve pulmonary nodule classification
to identify malignant nodules in a high-prevalence patient group. Methods: This study in-
volved 806 participants with undiagnosed nodules larger than 5 mm, focusing on assessing
nucleosome levels and histone modifications (H3.1 and H3K27Me3) in circulating blood.
Nodules were classified as malignant or benign. For model development, the data were
randomly divided into training (n = 483) and validation (n = 121) datasets. The model’s
performance was then evaluated using a separate testing dataset (n = 202). Results: Among
the patients, 755 (93.7%) had a tissue diagnosis. The overall malignancy rate was 80.4%.
For all datasets, the areas under curves were as follows: training, 0.74; validation, 0.86;
and test, 0.79 (accuracy range: 0.80–0.88). Sensitivity showed consistent results across all
datasets (0.91, 0.95, and 0.93, respectively), whereas specificity ranged from 0.37 to 0.64. For
smaller nodules (5–10 mm), the model recorded accuracy values of 0.76, 0.88, and 0.85. The
sensitivity values of 0.91, 1.00, and 0.94 further highlight the robust diagnostic capability of
the model. The performance of the model across the reporting and data system (RADS)
categories demonstrated consistent accuracy. Conclusions: Our epigenetic biomarker panel
detected non-small-cell lung cancer early in a high-risk patient group with high sensitivity
and accuracy. The epigenetic biomarker model was particularly effective in identifying
high-risk lung nodules, including small, part-solid, and non-solid nodules, and provided
further evidence for validation.
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1. Introduction
Lung cancer remains the leading cause of cancer-related mortality worldwide [1].

Early detection using low-dose computed tomography (LDCT) reduces death rates, as
evidenced in pivotal trials such as the National Lung Screening Trial (NLST) [2] and the
Dutch-Belgian Lung Cancer Screening Trial (NELSON) [3]. The NLST reported a 20%
reduction in lung cancer mortality with the implementation of LDCT screening [2]. Despite
these outcomes, indeterminate pulmonary nodules, which comprise 50–76% of the nodules
identified in the LDCT, present a significant challenge [4,5]. The likelihood of malignancy
increases with nodule size, with those measuring 7–29 mm exhibiting a malignancy risk
ranging from 1.7% to 22% [6]. Lung nodules detected using LDCT screening are often
<20 mm, complicating the biopsy process [6–8]. Consequently, while close monitoring is the
primary strategy, larger tumors may develop acquired or primary resistance or metastasize
during observation.

Efforts have been made to develop robust, sensitive, and non-invasive tests to di-
agnose pulmonary nodules [9]. Despite advancements, there is currently no regulatory-
body-approved and widely adopted blood test for the early detection of lung cancer [4].
Tumor cells release various biomolecules such as cell-free DNA (cfDNA), circulating tumor
DNA (ctDNA), exosomes, microRNAs, circular RNAs, circulating tumor cells (CTCs), and
DNA-methylated fragments. However, while these biomarkers are effective diagnostic
biomarkers, some experts remain skeptical of liquid biopsies, particularly in early-stage
cancers. Additionally, false positives and false negatives remain a challenge, as some
circulating tumor markers may be present without active malignancy, while small tumors
may not shed enough detectable biomarkers.

The detection of molecular changes in evolving tumor cells requires highly sensitive
and specific assays for ctDNA mutations [10,11]. The diagnostic sensitivity of liquid biopsy
tests is hampered by very low levels of somatic molecular alterations in patients with early-
stage cancer, who constitute the majority of the population after LDCT screening [12,13].

Changes in DNA methylation in specific regions, such as promoter CpG islands, may
signify early molecular events in tumor initiation [14]. Patients with cancer have distinct
histone post-translational modifications (PTMs) in circulating nucleosomes, indicating
their potential as cancer biomarkers. PTMs regulate chromatin-mediated gene expression,
affecting processes such as inflammation, cell cycle, apoptosis, and tumor suppression in
lung cancer. Nucleosomes are stable circulating nucleoprotein complexes carrying cfDNA
and ctDNA. Unlike DNA analysis, which requires additional preparation and sequencing
or PCR, nucleosomes can be directly quantified from plasma via immunoassay. Their
measurement is fast, automatable, and suitable for clinical practice. Histone variants and
modifications have shown prognostic significance in various cancers. However, their
potential as biomarkers for lung nodule differentiation remains underexplored [15,16].

We aimed to develop an epigenetic biomarker (EB) model based on circulating nu-
cleosomes, including histone variant and histone methylation, to evaluate the risk of
malignancy in pulmonary nodules and to achieve a more accurate classification of pul-
monary nodules, particularly through focusing on identifying malignant nodules in thoracic
surgery scenarios.
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2. Materials and Methods
2.1. Study Design and Patients

This prospective blood specimen collection and retrospective evaluation study was
approved by the Institutional Review Boards (201905009RIFC) of the participating hospitals
and researchregistry-10711. In guidelines for Asia, it is recommended that nodules with a
diameter of ≥5 mm undergo clinical management [17]. We recruited 806 participants with
undiagnosed nodules larger than 5 mm, identified on computed tomography (CT) scans
and classified as high risk by the attending physician. Adult patients of either sex aged
≥18 years were eligible for inclusion if they met the following criteria: pulmonary nodules
> 5 mm detected using standard CT or LDCT screening and with nodules categorized as
solid nodules, part-solid nodules (mixed ground-glass nodules), or pure non-solid nodules.
Participants were recruited from the outpatient clinics of the National Taiwan University
Hospital and the National Taiwan University Cancer Center, both teaching hospitals.
The study was conducted from August 2019 to July 2021. Exclusion criteria included
patients exhibiting metastatic symptoms such as pleural effusion, patients unwilling to
undergo blood sampling, patients without a confirmed pathological diagnosis post-surgery,
or patients with cancer confirmed pathologically within two years prior to enrollment.
Written informed consent was obtained from the patient for blood sampling.

2.1.1. Blood Sampling

All blood samples were prospectively collected before surgery, either during the initial
nodule check or during the admission period. Blood (10 mL) was collected in K2-EDTA
blood tubes (Sarstedt, Nümbrecht, Germany) within two weeks prior to the initiation of
surgery. Blood collection and CT-based response evaluations were conducted for patients
undergoing observation at 1–2 weeks intervals. Blood samples were centrifuged at 3000× g
for 10 min at 15–30 ◦C. The plasma was then stored at −80 ◦C until the nucleosome analysis
was conducted.

2.1.2. Quantification of Circulating Nucleosomes Using Immunoassays

All samples were tested using Nu.Q® assays (Belgian Volition SRL, Isnes, Belgium).
Two nucleosome structures were measured using the Nu.Q® H3.1 and Nu.Q® H3K27Me3
immunoassays according to the manufacturer’s instructions. These sandwich immunoas-
says, based on chemiluminescence technology, were performed using the IDS-i10 auto-
mated analyzer system (Immunodiagnostic System Ltd., Boldon, UK) with a wavelength
range of 300 to 500 nm. Briefly, plasma samples were centrifuged at high speed for
2 min and 50 µL of K2-EDTA plasma was incubated with acridinium ester labeled anti-
nucleosome detection antibody. Magnetic particle beads coated with the corresponding
monoclonal anti-histone variant H3.1 or anti-histone modification H3K27Me3 capture
antibody were added. After washing, trigger solutions were added, and the light emitted
by the acridinium ester was measured using a luminometer. The results were expressed
in relative light units, and concentration (expressed in ng/mL) was extrapolated using
four-parameter logistic regression of a reference standard curve. All samples were analyzed
in duplicate. If the sample concentration was higher than the lowest concentration and
the percent coefficient of variation (%CV) of the determined concentration was >20%, the
analysis was repeated.

2.1.3. Chest CT Imaging and Radiological Analysis

For each participant who underwent a chest CT scan (General Electric, Boston, MA,
USA/Siemens Healthineers, Erlangen, Germany), the lung and mediastinal image series
were reconstructed with a slice thickness of 1.000–1.250 mm if the scans were performed at
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the National Taiwan University Hospital and National Taiwan University Cancer Center.
The slice thickness was at least 5.000 mm. The chest CT images were initially evaluated
before drawing blood to confirm inclusion. The diagnosis of the nodules was based on the
pathological outcomes. If a nodule disappeared on subsequent imaging and a radiologist
confirmed this, it was classified as benign.

Imaging analysis was overseen by Jin-Shing Chen, a senior thoracic surgeon with
extensive experience exceeding three decades. Additional team members, Pei-Hsing Chen
and Tung-Ming Tsai, with 10 and 17 years of experience, respectively, interpreted the scans
and delineated the regions of interest. For subgroup analysis, the lung imaging, reporting,
and data system (Lung-RADS) version 1.1 guidelines were used [18]. In the validation of
the model, Hsiao-Hung Lu performed a blinded assessment, categorizing the nodules as
malignant or benign based on their spiculation characteristics.

Tumor size was determined preoperatively based on thin-section CT findings. All
tumors were subsequently evaluated to estimate the extent of ground-glass opacity (GGO)
using a thin-section CT scan with a 5.000 mm collimation. The solid component, part-solid
component, and GGO were defined as areas of increased opacification that completely
obscured the underlying vascular markings, as described in previous studies [19,20]. GGO
was defined as an area of slight, homogeneous increase in density that did not obscure the
underlying vascular markings.

2.1.4. Operation Policy and Pathology Evaluation

The operation policy followed the American College of Chest Physicians or Amer-
ican Association for Thoracic Surgery recommendations [21] to evaluate and treat
nodules > 5 mm [17]. Malignant and benign tumors were defined based on the 2021 WHO
Classification of Lung Tumors [22]. The subcategories of adenocarcinoma included in the
malignant group were atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ,
minimally invasive adenocarcinoma, and invasive adenocarcinoma [23].

2.2. Theory/Calculation
2.2.1. EB Model Development for Benign–Malignant Predictions

To advance the prediction of benign and malignant states in lung cancer, we developed
an EB model specifically focusing on nucleosome levels and histone modifications in
circulating blood. For model building, we employed a logistic regression approach to
predict benign and malignant states. For model development, we randomly allocated 25%
of the data to the test dataset (n = 202). The remaining 75% were further divided, with 80%
(n = 483) used for training and 20% (n = 121) for validation (Figure 1).

The training dataset was used for model development and the calculation of its
coefficients. Key biomarkers included histone isoform nucleosome levels (Nu.Q® H3.1)
and methylated lysine 27 of histone H3 (Nu.Q H3K27Me3). A validation dataset was used
to fine-tune the model and ensure its predictive capability.

Given the benefits of video-assisted thoracoscopic surgery, such as reduced invasive-
ness, accurate localization, and quick recovery [21,24,25], the main challenge for thoracic
surgeons is to accurately identify malignant lung nodules and minimize the risk of de-
layed diagnosis in high-risk populations identified through CT/LDCT screening. This
necessitates decreasing the false-negative rate while maintaining an adequate positive
predictive value (PPV). Achieving this requires a sensitivity of >80% while maintaining an
adequately high PPV to confidently identify lung cancer in high-prevalence populations.
To this end, the probability cutoff for cancer diagnosis was determined by maintaining
the model’s sensitivity at >0.80 and then selecting the optimal threshold using the Youden
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index. Finally, this cutoff was applied to the test dataset, and the diagnostic performance
was calculated.
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Figure 1. Flowchart of participant enrollment and model development. A total of 806 patients with
nodules > 5 mm were enrolled. The Epigenetic Biomarker (EB) model was trained on 483 samples,
validated on 121 samples, and tested on 202 samples. The model was built based on the training
dataset, with the cutoff determined using the validation dataset, and its performance evaluated on
the test dataset. MN refers to malignant nodules, and BN refers to benign nodules.

2.2.2. Comparison with the Mayo Clinic and Veteran Affairs (VA) Models

The Mayo Clinic model for malignancy in pulmonary nodules calculates the proba-
bility of malignancy using three clinical and three radiographic variables. The formula is
as follows:

probability of malignancy = ex/(1 + ex),

where x = −6.8272 + (0.0391 × age) + (0.7917 × smoking) + (1.3388 × cancer) + (0.1274 ×
nodule diameter) + (1.0407 × spiculation) + (0.7838 × upper lobe), and e is Euler’s number,
a mathematical constant approximately equal to 2.71828 [26].

The VA model for malignancy in pulmonary nodules calculates the probability of
malignancy using three clinical variables and one radiographic variable. The formula is

probability of malignancy = 100 × (ex/[1 + ex]), where x = −8.404 + 2.061 ×
smoke + 0.779 × age/10 + 0.112 × diameter + 0.567 × yearsquit/10,

where smoking is 1 if the patient is a current or former smoker (otherwise 0); age divided
by 10 is the age in years divided by 10; diameter is the largest diameter of the nodule in
millimeters; yearsquit/10 is the number of years since quitting smoking divided by 10; and
e is Euler’s number [27].

2.2.3. Statistics

All statistical analyses were conducted using R software (version 4.4.1). Categorical
variables such as sex and nodule sub-type were compared using Fisher’s exact test. The
sensitivities of the different Lung-RADS for malignant nodules were compared using
Fisher’s exact test. Continuous variables such as age were compared using Student’s t-test,
and 95% confidence intervals (CIs) were calculated based on Wald confidence intervals for
proportions. A p-value < 0.05 was considered statistically significant.

The sensitivity, specificity, accuracy, PPV, and negative PV (NPV) of the model and
other models for differentiating malignant nodules were assessed by comparing the patho-
logical outcomes and imaging studies (for those with vanished nodules only). Receiver
operating characteristic (ROC) and area under the curve (AUC) were calculated using
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pROC R package (version 1.15.3) software. The following R packages (version 1.15.3) were
utilized: readxl, tidyverse, ggplot2, pROC, tidymodels, and caret.

3. Results
3.1. Patient Demographics and Clinicopathologic Features

In total, 806 patients who were CT-positive/LDCT-positive were recruited from the
thoracic surgery departments of the National Taiwan University Hospital and the National
Taiwan University Cancer Center. Of these, 755 (93.7%) were tissue-diagnosed. The remain-
ing 51 (6.3%) patients had nodules that disappeared on subsequent imaging, confirmed by
a radiologist, and defined as benign. The malignancy rate in the entire cohort was 80.4%
(158 benign, 648 malignant). An overview of the study design is provided in Figure 1, and
the demographic characteristics of the 806 patients are detailed in Table 1. The diagnoses in
the cohort were predominantly early-stage lung cancer (AAH, stage 0, stage I, or stage II),
comprising 84.3% (546/648) of all cancer patients in the cohort. The mean nodule size
in the entire cohort was 25 mm. Additionally, 78.6% (630/806) of the patients had never
smoked. Adenocarcinoma and its subcategories constituted the majority of malignant cases
(92.6%, 600/648). No statistically significant differences in the distribution of malignancy,
age, sex, tumor components, tumor size, Lung-RADS scores, or smoking history (p > 0.05)
were observed among the three datasets. The demographic and clinical characteristics of
the participants are presented in Table 1.

Table 1. Participants’ baseline characteristics (n = 806).

Patient
Characteristics

Whole Cohort
(n = 806)

Training
Dataset
(n = 483)

n (%)

Validation Dataset
(n =121)

n (%)

Test
Set

(n = 202)
n (%)

p-Value

Mean age (years)
(range)

59.44 ± 11.75
(23–89)

59.04 ± 11.45
(26–88)

60.03 ± 12.41
(33–89)

60.02 ± 11.66
(23–85) 0.51

Female 511 (63.40%) 306
(63.35%)

79
(65.29%)

126
(62.38%) 0.87

Non-smoker 630
(78.16%)

379
(78.47%)

92
(76.03%)

159
(78.71%) 0.88

History of
alcohol

consumption

87
(10.79%)

53
(10.97%)

13
(10.74%)

21
(10.40%) 0.97

Lung cancer
family history

280
(34.74%)

164
(33.95%)

41
(33.88%)

75
(37.13%) 0.75

Nodule type 0.28

Solid 357
(44.29%)

217
(44.93%)

51
(42.15%)

89
(44.06%)

Part-solid 183
(22.71%)

114
(23.60%)

25
(20.66%)

44
(21.78%)

GGO 266
(33.00%)

152
(31.47%)

45
(37.19%)

69
(34.16%)
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Table 1. Cont.

Patient
Characteristics

Whole Cohort
(n = 806)

Training
Dataset
(n = 483)

n (%)

Validation Dataset
(n =121)

n (%)

Test
Set

(n = 202)
n (%)

p-Value

Lung-RADS 0.30

2 284 (35.24%) 164
(33.96%)

47
(38.84%)

73
(36.14%)

3 69
(8.56%)

40
(8.28%)

10
(8.27%)

19
(9.41%)

4A 107
(13.28%)

71
(14.70%)

19
(15.70%)

17
(8.41%)

4B, 4X 346
(42.92%)

208
(43.06%)

45
(37.19%)

93
(46.04%)

Nodule size (cm) 0.29

<1 cm 236
(29.28%)

136
(28.16%)

38
(31.41%)

62
(30.69%)

1–2 cm 274
(34.00%)

173
(35.82%)

44
(36.36%)

57
(28.22%)

>2 cm 296
(36.72%)

174
(36.02%)

39
(32.23%)

83
(41.09%)

Mean tumor size:
cm (range)

2.05 ± 1.70
(0.3–10.2)

2.00 ± 1.64
(0.3–10.1)

1.92 ± 1.63
(0.5–9.6)

2.24 ± 1.87
(0.4–10.2) 0.15

Nodule location 0.16

Right upper lobe 211
(26.18%)

125
(25.88%)

35
(28.92%)

51
(25.25%)

Right middle
lobe

67
(8.31%)

49
(10.15%)

9
(7.44%)

9
(4.45%)

Right lower lobe 171
(21.22%)

98
(20.29%)

28
(23.14%)

45
(22.28%)

Left upper lobe 231
(28.66%)

137
(28.36%)

31
(25.62%)

63
(31.19%)

Left lower lobe 113
(14.12%)

68
(14.08%)

18
(14.88%)

27
(13.37%)

Others * 13
(1.61%)

6
(1.24%)

0
(0.00%)

7
(3.46%)

Malignancy 648
(80.40%)

389
(80.54%)

96
(79.34%)

163
(80.69%) 0.95

Nodule size (%) < 1 cm, 1–2 cm, >2 cm. * Patients with a pleural lesion, a hilum lesion, or an inter-fissure lesion.
Abbreviations: GGO, ground-glass opacity;

3.2. The EB Model and Lung Cancer Diagnostic Accuracy

The cohort data were divided into a test dataset (n = 202, 25%) and the EB model
development subset (75%). The training dataset (n = 483) comprised 80% of the EB model
development subset and was used for the model development. The validation dataset
(n = 121) comprised 20% of the model development subset and was used for the optimal
threshold selection.
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We developed the EB model by screening multiple combination models from five
quantitative epigenetic features (Tables S1 and S2) derived from blood tests during the
pre-training model tuning. For feature selection, we analyzed the relationship between the
AUC values and the number of primary features. The AUC plateaued when the number of
primary features reached two, indicating that adding more features did not significantly
improve the AUC. Therefore, we identified two predictors of malignancy using multivariate
logistic regression analysis. This was then applied to the training dataset using Nu.Q® H3.1
and Nu.Q® H3K27Me3. Other potential predictors not associated with malignancy were
excluded from the final model. The prediction model was calculated as follows:

Probability of malignant SPN = ex/1 + ex

X = 1.78668 + 0.07821 × H3.1 − 0.15885 × H3K27Me3,

where H3.1 is the level of the histone variant H3.1, and H3K27Me3 is the histone mod-
ification H3K27Me3. Analysis of the relationship between the AUC values, detailed in
Figure 2a,b, provided AUC values for all the datasets. Positive and negative classifi-
cations for the model were determined using a cutoff value (0.755). We validated the
performance of the EB model using a test set that showed consistently good performance
(Supplementary Table S3).

Cancers 2025, 17, x FOR PEER REVIEW 8 of 17 
 

 

significantly improve the AUC. Therefore, we identified two predictors of malignancy us-
ing multivariate logistic regression analysis. This was then applied to the training dataset 
using Nu.Q® H3.1 and Nu.Q® H3K27Me3. Other potential predictors not associated with 
malignancy were excluded from the final model. The prediction model was calculated as 
follows: 

Probability of malignant SPN = ex/1 + ex 

X = 1.78668 + 0.07821 × H3.1 − 0.15885 × H3K27Me3, 

where H3.1 is the level of the histone variant H3.1, and H3K27Me3 is the histone modifi-
cation H3K27Me3. Analysis of the relationship between the AUC values, detailed in Fig-
ure 2a,b, provided AUC values for all the datasets. Positive and negative classifications 
for the model were determined using a cutoff value (0.755). We validated the performance 
of the EB model using a test set that showed consistently good performance (Supplemen-
tary Table S3). 

Figure 2. Epigenetic biomarker model. (a) A representative ROC curve illustrates the classification 
performance of the Epigenetic Biomarker model across the training, validation, and test datasets. 
(b) The left panel shows predicted probabilities for malignant (red) and benign (blue) nodules. The 
right panel presents the confusion matrix of the test dataset at a cutoff value of 0.755, yielding an 
accuracy of 85%. 

When comparing the model performance across all cohorts, specifically for small 
nodules (5–10 mm), the results indicated that the model remained robust even for smaller 
nodules. In the overall dataset, the AUCs for the EB model were 0.74, 0.86, and 0.79 for 
the training, validation, and test datasets, respectively, with accuracies ranging from 0.80 
to 0.88. Sensitivity was high across all datasets, with values of 0.91, 0.95, and 0.93, respec-
tively, while specificity ranged from 0.37 to 0.64. The PPV and NPV were consistent, indi-
cating the reliability of the model for predicting true positives and negatives. 

The model maintained strong performance for small nodules (5–10 mm). The AUCs 
of the training, validation, and test datasets were 0.70, 0.89, and 0.80, respectively, with 
accuracies of 0.76, 0.88, and 0.85, respectively, indicating that the diagnostic accuracy of 
the model remained high for smaller nodules. The sensitivities were 0.91, 1.00, and 0.94, 
respectively, indicating that the model correctly identified the majority of malignant cases. 
Although lower than sensitivity, specificity was sufficient in most of the subgroups to 
complement high sensitivity, with values of 0.27, 0.62, and 0.54, respectively. 

  

Figure 2. Epigenetic biomarker model. (a) A representative ROC curve illustrates the classification
performance of the Epigenetic Biomarker model across the training, validation, and test datasets.
(b) The left panel shows predicted probabilities for malignant (red) and benign (blue) nodules. The
right panel presents the confusion matrix of the test dataset at a cutoff value of 0.755, yielding an
accuracy of 85%.

When comparing the model performance across all cohorts, specifically for small
nodules (5–10 mm), the results indicated that the model remained robust even for smaller
nodules. In the overall dataset, the AUCs for the EB model were 0.74, 0.86, and 0.79 for the
training, validation, and test datasets, respectively, with accuracies ranging from 0.80 to
0.88. Sensitivity was high across all datasets, with values of 0.91, 0.95, and 0.93, respectively,
while specificity ranged from 0.37 to 0.64. The PPV and NPV were consistent, indicating
the reliability of the model for predicting true positives and negatives.

The model maintained strong performance for small nodules (5–10 mm). The AUCs
of the training, validation, and test datasets were 0.70, 0.89, and 0.80, respectively, with
accuracies of 0.76, 0.88, and 0.85, respectively, indicating that the diagnostic accuracy of
the model remained high for smaller nodules. The sensitivities were 0.91, 1.00, and 0.94,
respectively, indicating that the model correctly identified the majority of malignant cases.
Although lower than sensitivity, specificity was sufficient in most of the subgroups to
complement high sensitivity, with values of 0.27, 0.62, and 0.54, respectively.
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Lung-RADS Score Analysis in the Test Dataset

The model’s performance across different RADS categories was evaluated using a test
dataset. In RADS 2 (n = 73), the model achieved an AUC of 0.75, an accuracy of 0.84, a
sensitivity of 0.90, and a specificity of 0.57. In RADS 3 (n = 19), the AUC was 0.81, with an
accuracy of 0.84, a sensitivity of 1.00, and a specificity of 0.40. In RADS 4A + 4B (n = 81),
the AUC was 0.78, with an accuracy of 0.82, a sensitivity of 0.92, and a specificity of 0.44. In
RADS 4X (n = 29), the model performed best, with an AUC of 0.98, an accuracy of 0.97, a
sensitivity of 0.96, and a specificity of 1.00. These results show high diagnostic accuracy,
especially in the higher RADS categories, indicating the clinical utility of the model for
assessing pulmonary nodules (Table 2).

Table 2. Performance metrics in the test dataset according to Lung-RADS.

Lung-RADS

2 3 4A + 4B 4X

(n = 73) (n = 19) (n = 81) (n = 29)

AUC 0.75 0.81 0.78 0.98

Accuracy 0.84
(0.73–0.91)

0.84
(0.60–0.97)

0.82
(0.71–0.89)

0.97
(0.82–1.00)

Sensitivity 0.90
(0.79–0.96)

1.00
(0.73–1.00)

0.92
(0.82–0.97)

0.96
(0.79–1.00)

Specificity 0.57
(0.30–0.81)

0.40
(0.07–0.83)

0.44
(0.22–0.69)

1.00
(1.00–1.00)

PPV 0.90
(0.79–0.96)

0.82
(0.56–0.95)

0.85
(0.74–0.92)

1.00
(0.84–1.00)

NPV 0.57
(0.30–0.81)

1.000
(0.20–1.00)

0.62
(0.32–0.85)

0.67
(0.13–0.98)

Abbreviations: AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV,
positive predictive value; Lung-RADS, lung imaging reporting and data system.

3.3. EB Model Performance in Different Nodule Types

The model demonstrated the detection of lung cancer with accuracy independent of
the tumor components; 0.84 for solid and part-solid nodules and 0.86 for GGO nodules in
the test dataset. Both GGO and part-solid nodules showed higher PPV when maintaining a
similar threshold. The PPVs were 0.86 (95% CI 0.76–0.92) for solid nodules, 0.91 (95% CI
0.76–0.98) for part-solid nodules, and 0.91 (95% CI 0.80–0.97) for GGO nodules. These results
highlight the high diagnostic accuracy of the model across different tumor components,
indicating its potential utility in the assessment of pulmonary nodules (Table 3).

Table 3. Performance metrics in the test dataset according to tumor component.

Component

Solid Part-Solid GGO

All Nodule Sizes (n = 89) (n = 44) (n = 69)

Accuracy 0.84
(0.75–0.91)

0.84
(0.70–0.93)

0.86
(0.75–0.93)

Sensitivity 0.96
(0.87–0.99)

0.89
(0.73–0.96)

0.91
(0.80–0.97)
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Table 3. Cont.

Component

Solid Part-Solid GGO

All Nodule Sizes (n = 89) (n = 44) (n = 69)

Specificity 0.45
(0.24–0.68)

0.63
(0.26–0.90)

0.55
(0.25–0.82)

PPV 0.86
(0.76–0.92)

0.91
(0.76–0.98)

0.91
(0.80–0.97)

NPV 0.75
(0.43–0.93)

0.56
(0.23–0.85)

0.55
(0.25–0.82)

Abbreviation: GGO, ground-glass opacity; NPV, negative predictive value; PPV, positive predictive value.

3.4. Conventional Cancer Diagnostic Model Comparison

For the validation (Figure 3 and Supplementary Table S4), the EB model achieved an
AUC of 0.858 (95% CI 0.779–0.937), significantly outperforming the Mayo Clinic model
(AUC, 0.570 [95% CI 0.446–0.694]) and the VA model (AUC, 0.503 [95% CI 0.386–0.621]).
The accuracy, sensitivity, and specificity of the EB model are detailed in Table 4. Its superior
AUC indicates a higher overall performance compared with the Mayo Clinic and VA
models. This finding indicates the potential effectiveness of the EB model in accurately
predicting outcomes compared with established clinical models.
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Figure 3. Receiver operating characteristic (ROC) curves for the epigenetic biomarker (EB) model
comparing the true class with the predicted class for benign and malignant nodule samples with the
Mayo Clinic and Veteran Affairs (VA) models.
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Table 4. Performance metrics.

Epigenetic Simple Regression Model

Training Dataset Validation Dataset Test Dataset

All Nodule Sizes (n = 483) (n = 121) (n = 202)

AUC 0.74 0.86 0.79

Accuracy 0.80
(0.77–0.84)

0.88
(0.81–0.94)

0.85
(0.79–0.89)

Sensitivity 0.91
(0.87–0.93)

0.95
(0.88–0.98)

0.93
(0.87–0.96)

Specificity 0.37
(0.28–0.48)

0.64
(0.43–0.81)

0.51
(0.35–0.67)

PPV A 0.86
(0.82–0.89)

0.91
(0.83–0.96)

0.89
(0.83–0.93)

NPV A 0.49
(0.37–0.61)

0.76
(0.53–0.91)

0.63
(0.44–0.78)

Nodules sized 5–10 mm (n = 142) (n = 43) (n = 61)

AUC 0.70 0.89 0.80

Accuracy (95% CI) 0.76
(0.68–0.83)

0.88
(0.75–0.96)

0.85
(0.74–0.93)

Sensitivity (95% CI) 0.91
(0.83–0.95)

1.000
(0.86–1.000)

0.94
(0.82–0.98)

Specificity (95% CI) 0.27
(0.14–0.46)

0.62
(0.32–0.85)

0.54
(0.26–0.80)

PPV (95% CI) B 0.81
(0.72–0.87)

0.86
(0.69–0.95)

0.88
(0.75–0.95)

NPV (95% CI) B 0.47
(0.25–0.71)

1.000
(0.60–1.000)

0.70
(0.35–0.92)

A Cancer prevalence, 80.4% in the current cohort. B Cancer prevalence, 76.0% in the current subgroup cohort.
Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; NPV, negative
predictive value; PPV, positive predictive value.

4. Discussion
Early cancer detection is an effective method for reducing cancer-specific mortality.

We analyzed the EB profiles of 806 patients with pulmonary nodules and developed an
EB model for pulmonary nodule diagnosis; it showed high sensitivity and accuracy with
good PPVs at moderate specificity across various imaging characteristics, nodule types,
and stages of lung cancer. The EB model also maintained adequate performance, even for
small nodules ranging from 5 to 10 mm, which would help decrease the false-negative
rate concerning minimally invasive surgery. In addition, sandwich immuo-based assays
are simple and relatively inexpensive. This is the first retrospective study to validate a
blood-based EB model for diagnosing lung nodules.

Previous studies have attempted to enhance lung cancer risk assessment using blood-
based biomarkers [28–30]. Various biosources from liquid biopsy, including cfDNA, ctDNA,
CTCs, exosomes, and tumor-educated platelets, have been extensively investigated for
their role in lung cancer diagnosis. However, none of these tests have been implemented
clinically because their sensitivities and specificities are typically insufficient for clinical
decision-making [12,13,30]. Alterations in the epigenome, such as DNA methylation and
histone modification, play pivotal roles in carcinogenesis. DNA methylation levels and
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global histone modification patterns may predict cancer recurrence and prognosis across
a wide variety of cancer types [31,32]. In lung cancer, these changes affect significant
signaling pathways, including the ERK family, NF-kB, and Hedgehog pathways. Addi-
tionally, epigenetic markers are potential biomarkers for early screening, monitoring, and
therapeutic strategies in non-small-cell lung cancer (NSCLC) [16].

PTMs can work together or independently to promote the activation or suppression
of chromatin-mediated gene expression. They include the regulation of inflammatory
cytokines, cell cycle arrest, senescence, apoptosis, growth factors, antioxidants, and tumor
suppressor genes associated with lung cancer [16]. We focused on the histone variant
H3.1 levels and the histone modification H3K27me3. Regarding the prognostic effect of
H3K27me3 in various human cancers, the increased level of H3K27me3 is linked to a more
malignant behavior and worse prognosis in patients with prostate [33], esophageal [34],
nasopharyngeal [35], and hepatocellular [36] carcinoma. Conversely, in breast, ovarian, and
pancreatic cancers [31] and in renal cell carcinoma [37], a decrease in the H3K27me3 levels
is associated with a worse prognosis. In lung cancer patients, a lower level of H3K27me3
in tissues has been associated with carcinogenesis [38], whereas a high level of circulating
H3K27Me3-nucleosomes in blood has been associated with lung cancer at diagnosis and
during treatment [39]. Our model focused on differentiating between benign and malignant
nodules. The precise role of H3K27me3 in distinguishing between normal and malignant
populations still requires further investigation.

In the era of network medicine and artificial intelligence (AI), integrating epigenetic-
sensitive biomarkers like H3K27me3 into clinical practice through patient-centered plat-
forms offers significant potential [40]. These platforms utilize AI to analyze genetic, epige-
netic, and clinical data, enabling the precise diagnosis and treatment of lung cancer [41,42].
By processing large-scale omics data, such systems can create personalized treatment plans
and provide real-time tumor profile information for tailored interventions. Recent stud-
ies [40–42] highlight how AI-driven platforms in oncology can improve diagnostic accuracy
and predict treatment response. By analyzing circulating H3K27me3-nucleosomes, AI
can identify tumor patterns and suggest personalized therapies. This combination of net-
work medicine and AI can enhance cancer detection, monitoring, and treatment selection,
ultimately optimizing patient outcomes.

We believe that network medicine and AI will be the future of oncology, increasing
diagnostic accuracy and enabling the selection of the right treatment. This includes iden-
tifying the highest-risk groups for adjuvant therapy and predicting prognosis based on
imaging and pathological risk factors, ensuring more precise and effective personalized
care for lung cancer patients.

In the era of network medicine and artificial intelligence (AI), integrating epigenetic-
sensitive biomarkers like H3K27me3 into clinical practice through patient-centered plat-
forms offers significant potential. These platforms would utilize AI to analyze genetic,
epigenetic, and clinical data, enabling the precise diagnosis and treatment of lung cancer.
By processing large-scale omics data, such systems can create personalized treatment plans
and provide real-time tumor profile information for tailored interventions. Recent studies
highlight how AI-driven platforms in oncology can improve diagnostic accuracy and pre-
dict treatment response. By analyzing circulating H3K27me3-nucleosomes, AI can identify
tumor patterns and suggest personalized therapies. This combination of network medicine
and AI would enhance cancer detection, monitoring, and treatment selection, ultimately
optimizing patient outcomes.

Beyond LDCT screening, liquid biopsies can identify various biomolecular markers,
offering insights into the disease status. Integrating liquid biopsy with model training
shows great promise for early-stage diagnoses [43]. However, many current liquid biopsy
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methods targeting early cancer detection lack the sensitivity to reliably identify early-stage
cancers or small nodules [44–47]. The EB model showed satisfactory accuracy, PPV, and
NPV for small nodules, specifically within the 5–10 mm range (Table 2). This simple
epigenetic regression model had both strengths and limitations. The AUC and accuracy of
the model improved significantly from the training to the validation dataset, indicating
better predictive performance with new data. The sensitivity was particularly strong,
with the validation dataset achieving a perfect score (1.000), emphasizing its effectiveness
in detecting malignant nodules, which is essential for early cancer detection. However,
specificity was sub-optimal, particularly in the training set. While specificity improved in
the validation and test datasets, the risk of false positives remained an issue. Given the
benefits of video-assisted thoracoscopic surgery, the main challenge for thoracic surgeons is
to accurately identify malignant lung nodules and minimize the risk of delayed diagnosis
in high-risk populations identified through CT/LDCT screening.

We applied the updated Lung-RADS to retrospectively evaluate nodule characteris-
tics [18]. The Lung-RADS categorizes nodules based on their likelihood of being malignant,
with classification depending on characteristics such as size, attenuation, growth pattern,
and other features that may indicate a higher risk of cancer [18]. Nodules classified under
Lung-RADS categories 1 and 2 have an estimated malignancy risk of <1%, whereas those in
category 3 have a 1–2% risk. Nodules in the category 4A have a 5–15% risk, whereas those
in categories 4B and 4X have a risk of >15% [18]. Most lung cancers identified through
screening were observed in nodules categorized as Lung-RADS 3 or 4.

Table 3 shows that the model effectively maintained good accuracy, PPV, and sensitiv-
ity in Lung-RADS categories 2 and 3, which are often associated with a lower malignancy
risk. The accuracy of both RADS 2 and RADS 3 was consistently high at 0.84, indicating
that the model was reliable for correctly classifying nodules as either malignant or benign
within these groups. The PPV remained robust, with RADS 2 at 0.90 and RADS 3 at 0.82,
showing that when the model predicted a nodule as malignant, it was generally accurate
and that the likelihood that these nodules were malignant was high. Furthermore, the
sensitivity findings highlighted the model’s reliability in correctly identifying malignant
nodules, ensuring that few malignancies were missed. Overall, the model maintained
strong performance across these metrics, demonstrating its reliability and effectiveness
even in categories with a lower pre-test probability of malignancy, supporting its utility in
lung cancer screening programs.

In CT lung cancer screening, detected nodules are often part-solid or non-solid; these
types of nodules are more likely to be malignant than solid nodules, even when their
size is considered [48]. Therefore, achieving high accuracy and PPV in non-solid and
part-solid nodules is crucial; our model performed very well in these categories. Although
advancements in lung cancer treatment now allow surgery even for stage IV patients, early
detection remains the best treatment option [49]. As shown in Table 4, the model’s accuracy
was consistent across all nodule types, with 0.84 for both solid and part-solid nodules,
and slightly higher at 0.86 for non-solid GGO nodules. The sensitivity remained high,
particularly for solid nodules at 0.96, followed by 0.91 for non-solid nodules, and 0.89 for
part-solid nodules. This indicates that the model effectively correctly identified malignant
nodules across these types. Moreover, the PPV was consistently strong, with 0.86 for solid
nodules, 0.91 for part-solid nodules, and 0.91 for non-solid nodules. This suggests that
when the model predicts a nodule as malignant, there is a high probability that it will be
malignant, regardless of the nodule type. The model showed excellent performance in
identifying malignancies in both part-solid and non-solid nodules, which are more likely to
be malignant than solid nodules. This strong performance in terms of accuracy, sensitivity,
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and PPV underlines the reliability and effectiveness of the model for lung cancer screening,
particularly for nodules that present a higher risk of malignancy.

This study had some limitations. We only enrolled thoracic department participants
with definitive pathological diagnoses, which may limit the generalizability of the findings.
Additionally, the imaging sources were not standardized across the studies, leading to
potential image quality and interpretation variability. There was also a lack of integration
between the imaging and clinical characteristics of the model parameters, owing to the
simplified methodology. Such integration would have provided a more comprehensive
assessment. Moreover, the study enrolled a higher proportion of women than men, more
never-smokers than smokers, and more patients with adenocarcinoma than those with
squamous carcinoma. The study was conducted without using a central laboratory in
Taiwan and involved a shipping process that may have introduced variability. We plan to
establish an EB model test at a central laboratory-provided service in Taiwan to ensure con-
sistency and reliability. Furthermore, this study was conducted retrospectively, which raises
the possibility of overfitting during the model development. The lack of validation further
limits the validation of the findings’ robustness. A prospective, multi-institutional study
with a larger and more diverse patient cohort is required to confirm these observations and
enhance the generalizability of the results.

5. Conclusions
Our study showed that high sensitivity and accuracy in the early detection of NSCLC

can be achieved using a panel of EBs in plasma. Concerning detecting high-risk lung cancer,
the EB model performed well in detecting small, part-solid, and non-solid nodules, which
are the majority in lung cancer screening. This model may reduce false-negative results
and facilitate early diagnosis.
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