Nanopore sequencing to elucidate the origins of circulating **DNA during extracorporeal membrane oxygenation**

Benjamin P. Berman^{1,2}, Andrew J Doyle³, Christina Wheeler¹, Emmanuel Antonio⁴, Andrew Retter^{1,3,5}, Theresa K. Kelly^{1,2}.

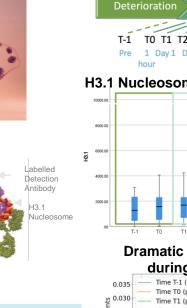
Cannulatior

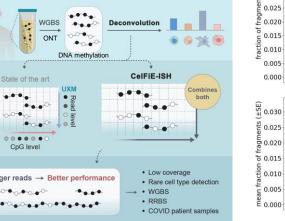
1. Volition America LLC, Henderson, Nevada, United States of America 2. Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Jerusalem, Israel; 3. Centre for Thrombosis and Haemostasis. St Thomas' Hospital, London, United Kingdom: 4. Volition Veterinary Diagnostics Development, Henderson, Nevada, United States of America: 5. Department of Critical Care, St Thomas' Hospital, London, United Kingdom; Presenting author: Andrew Retter (Andrew.Retter@gstt.nhs.uk)

Decannulation

INTRODUCTION

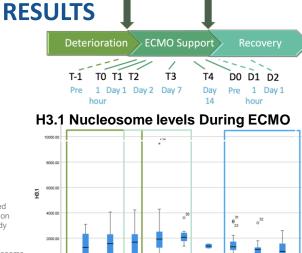
- Circulating DNA and nucleosomes are a new class of biomarkers for severe respiratory infection and sepsis.
- Extreme cases of sepsis undergo extracorporeal membrane oxygenation (ECMO).

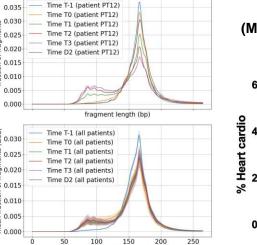

• The effects of ECMO on circulating DNA and chromatin biomarkers are unknown.


OBJECTIVES

- To understand the changes and origins of circulating DNA in patients with severe infection-related respiratory failure before, during, and after ECMO treatment.
- Use shallow whole-genome sequencing (sWGS) from Oxford • Nanopore Technologies (ONT) to determine cell of origin and cfDNA fragmentation.
- ONT sWGS does not require amplification, enables both long and short DNA sequencing of both host and pathogen DNA, and is most suitable for near-patient rapid analysis in the hospital setting.

METHODS


- We analyzed plasma cfDNA from 61 timepoints from 8 adult patients: one timepoint collected before ECMO, multiple timepoints during ECMO, and one or more timepoints up to 2 days after decannulation.
- Measured nucleosome levels using the H3.1 Nu.Q[®] assay.
- Sequenced cfDNA using ONT sWGS (median 17 million reads)¹.
- Determined Cell of Origin of circulating DNA using computational deconvolution of genome-wide DNA methylation levels².



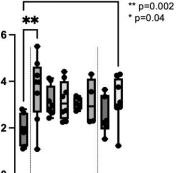
Captur

Antibody

Dramatic fragment shortening during and after ECMO

fragment length (bp)

CONCLUSIONS


- ONT sequencing can reveal key molecular markers from circulating cell-free DNA patients with severe infections.
- The ability of ONT to profile both fragmentomic properties as well as DNA methylation allowed us to identify changes associated with severe respiratory failure and ECMO.
- The suitability of ONT sequencing for near-patient, rapid sequencing makes it a promising technology in the critical care setting.
- ONT sWGS of circulating DNA may have sufficient sensitivity to measure cardiac stress or damage³ during ECMO.

ACKNOWLEDGEMENTS

We would like to thank members of Volition's Innovation lab and R&D departments as well as the clinicians and nurses and Guy's and St Thomas' NHS Foundation Trust, in addition to the patients and their families.

REFERENCES

Increase in heart DNA during and after ECMO (Methylation cell of origin)

1,101,11,200,01

1. Katsman, E. et al., Detecting Cell-of-Origin and Cancer-Specific Methylation Features of Cell-Free DNA from Nanopore Sequencing. Genome Biol. 2022, 23:158. https://doi.org/10.1186/s13059-022-02710-1

** p=0.002 2. Unterman, I. et al., CelFiE-ISH: a probabilistic model for multi-cell type deconvolution from single-molecule DNA methylation haplotypes. Genome Biol. 2024, 25:151. https://doi.org/10.1186/s13059-024-03275-x

> 3. Zemmour, I. et al., Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat. Commun. 2018, 9:1443. https://doi.org/10.1038/s41467-018-03961-y

4. Camporota, et al., A. Consensus on the Referral and Admission of Patients with Severe Respiratory Failure to the NHS ECMO Service. Lancet Respir. Med. 2021, 9 (2), e16-e17. https://doi.org/10.1016/S2213-2600(20)30581-6

Art by Irene Unterman, Ben Berman, and Yitzchak Yadegari