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Abstract

Background: Neutrophils, the most abundant white blood cells in humans, play pivotal roles

in innate immunity, rapidly migrating to sites of infection and inflammation to phagocytose,

neutralize, and eliminate invading pathogens. Neutrophil extracellular trap (NET) formation

is increasingly recognized as an essential rapid innate immune response, but when dysre-

gulated, it contributes to pathogenesis of sepsis and immunothrombotic disease.

Objectives: Current NETosis models are limited, routinely employing nonphysiological

triggers that can bypass natural NET regulatory pathways. Models utilizing isolated

neutrophils and immortalized cell lines do not reflect the complex biology underlying

neutrophil activation and NETosis that occurs in whole blood. To our knowledge, we

report the first human ex vivo model utilizing naturally occurring molecules to induce

NETosis in whole blood. This approach could be used for drug screening and, impor-

tantly, inadvertent activators of NETosis.

Methods: Here we describe a novel, high-throughput ex vivo whole blood–induced

NETosis model using combinatorial pooling of native NETosis-inducing factors in a

more biologically relevant Synthetic-Sepsis model.

Results: We found different combinations of factors evoked distinct neutrophil re-

sponses in the rate of NET generation and/or magnitude of NETosis. Despite interdonor

variability, similar sets of proinflammatory molecules induced consistent responses

across donors. We found that at least 3 biological triggers were necessary to induce

NETosis in our system including either tumor necrosis factor-α or lymphotoxin-α.

Conclusion: These findings emphasize the importance of investigating neutrophil

physiology in a biologically relevant context to enable a better understanding of disease

pathology, risk factors, and therapeutic targets, potentially providing novel strategies

for disease intervention and treatment.
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1 | INTRODUCTION

The innate immune system is the body’s first line of defense and

rapidly responds to infection. Neutrophils represent 50% to 70% of

white blood cells in humans and play a pivotal role in the initial

response to infection. While neutrophils can phagocytose pathogens,

they also release extracellular traps to rapidly immobilize pathogens

and prevent dissemination. NETosis, first described by Brinkmann

et al. [1] in 2004, involves the formation of neutrophil extracellular

traps (NETs) through rapid decondensation of nuclear chromatin,

driven by changes to histone posttranslational modifications, followed

by externalization of web-like NETs containing long strands of chro-

matin and include associated antimicrobial granular enzymes

(neutrophil elastase and myeloperoxidase [MPO]) [1]. While NETs

serve as a vital defense mechanism, mounting evidence suggests that

dysregulation and excessive formation can contribute to pathogenesis

in sepsis and other immunothrombotic disorders through host-

directed bystander effects, initiation of a hyperinflammatory feed-

back loop, and disseminated intravascular coagulation [2]. Elevated

nucleosome levels, a component of NETs, have been described in

several studies of NETosis-related conditions, including COVID-19

and sepsis, and are negatively correlated with survival [3–6].

NETosis research has largely relied on mouse models, in

vitro models using isolated primary neutrophils and neutrophil-like

cells induced from immortalized cell lines [7–9]. While these models

have provided valuable insights into NETosis, they have significant

limitations. Murine immune responses, though informative, can differ

substantially from human responses in part due to the significantly

lower proportion of neutrophils, their maturation profile, and half-life

[10–12]. Immortalized HL-60 cells are highly dependent on culture

conditions and do not recapitulate neutrophil fragility. NETosis in-

duction in isolated primary neutrophils overcomes many of these

limitations, providing important insights into neutrophil activation and

regulation [13–15]. However, neutrophils are very fragile, and the

method of isolation impacts their response to various stimuli [16]. To

bridge the gap between existing models and the clinical reality of

human immunothrombotic disease, relevant ex vivo human models

that enable rapid processing and require minimal handling are

essential [12].

Various synthetic as well as physiologically relevant factors

induce NETosis. In vivo, Staphylococcus aureus and lipopolysaccharides

(LPS) are commonly used NETosis inducers, while in vitro models

typically use LPS or calcium ionophore (CI) and, the most commonly

reported inducer, phorbol 12-myristate 13-acetate (PMA) [17]. PMA is

an extremely powerful inducer of NETosis but is not physiologically

relevant as it can bypass natural regulatory pathways governing NET

production, thus preventing the ability to fully understand regulatory

feedback loops and limiting the clinical relevance of findings from

PMA-induced NETosis studies [18].

Despite advances in critical care, sepsis and immunothrombotic

disorders remain major global health burdens. New strategies are

urgently needed to unravel the intricacies of the pathophysiologies,

understand individual patient susceptibility, and ultimately develop
more effective diagnostic tools and treatments. An ex vivo human

NETosis model using physiologically relevant triggers in the presence

of other blood cells (eg, macrophages and platelets) and circulating

proteins offers several distinct advantages. Primarily, investigation of

the dynamics of NET formation, regulation, and function in a clinical

context would better translate insights into patient settings. Addi-

tionally, human cell models enable exploration of patient-specific

factors, including genetic predisposition and influence of preexisting

conditions, which can significantly impact sepsis and immuno-

thrombotic outcomes. By dissecting the molecular mechanisms un-

derlying NETosis using human cells, we can potentially identify novel

therapeutic targets and develop personalized sepsis treatment

strategies.

Here, we developed a human primary cell-based Synthetic-Sepsis

model using intact whole blood to study NETosis induction with

physiologically relevant molecules (Supplementary Figure S1A). We

show that NETosis induction using panels of proinflammatory mole-

cules varied in both time scale and magnitude of NET release

compared with nonphysiological PMA induction. Furthermore, we

show differential NETosis profiles based on specific combinations of

molecules, which we hypothesize could distinguish between beneficial

and pathogenic NETosis. Moreover, we show that tumor necrosis

factor (TNF)-α or lymphotoxin (LT)-α was necessary but not sufficient

for NETosis induction and that in the presence of complement

component 5a (C5a), rapid onset of NETosis occurred within 2 hours

of exposure. A minimal combination of LT-α, C5a, and N-formyl-Met-

Leu-Phe (fMLP) was able to consistently induce NETosis in multiple

donors. We believe that our novel model could delineate underlying

complexities of NETosis, potentially leading to the development of

innovative diagnostic tools and targeted interventions for immuno-

thrombotic disorders and other NETosis-related pathologies.
2 | METHODS

2.1 | Whole blood acquisition

Anonymous healthy donor K2-EDTA whole blood was obtained from

PrecisionMed. This research was approved under WCG Institutional

Review Board protocol number 20181025, and all human participants

gave written informed consent. Subjects were self-declared healthy

between the ages of 18 and 50 years with body mass index <30 and

not taking nonsteroidal anti-inflammatory drugs. Whole blood was

stored at room temperature (RT) and processed within 1 hour after

draw.
2.2 | Neutrophil isolation and imaging

Neutrophils were isolated from whole blood using the MACSxpress

Whole Blood Neutrophil Isolation Kit (Miltenyi, 130-104-434) ac-

cording to the manufacturer’s protocol. Erythrocyte lysis was con-

ducted by resuspension and incubation of cells for 1 minute in 0.22×
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phosphate buffered saline (PBS) hypotonic lysis buffer, followed by

equilibration with an equal volume of 1.78× PBS equilibration buffer.

Neutrophil purity was confirmed by fluorescence-activated cell

sorting (Supplementary Figure S1B, C).
2.3 | Fluorescence-activated cell sorting

Whole blood fixation and neutrophil isolation were performed

following a standardized protocol. Briefly, whole blood samples were

collected in tubes containing K2-EDTA. Fixation was achieved by

adding a 10× formaldehyde solution or a 4% paraformaldehyde so-

lution to the whole blood samples for 10 minutes. After incubation

and quenching of fixation, cells were resuspended in ice-cold 1× PBS

for further processing.
2.4 | Isolated neutrophil NETosis induction

Neutrophils were resuspended in RPMI1640 (Gibco, 11-875-119)

containing 250 nM Cytotox Green (Sartorius, 4633) to 2.0 × 105 cells/

mL and seeded at 100 μL/well in a 96-well Incucyte ImageLock plates

(Sartorius, 4806) coated with 10 μg/mL Fibronectin (Sigma-Aldrich,

F1141). The plate was centrifuged at 120g for 2 minutes to seat the

neutrophils at the bottom of the plate. NETosis stimuli, PMA (Sigma-

Aldrich, P1585), CI (Sigma-Aldrich, C7522), LPS from Pseudomonas

aeruginosa 10 (Sigma-Aldrich, L7018), and inhibitors were diluted in

RPMI1640 containing Cytotox Green and then added to the plate

containing neutrophils. Inhibitors 4-aminobenzoic acid hydrazide

(ABAH, Sigma-Aldrich, A41909-10G) or diphenyleneiodonium chloride

(DPI, Sigma-Aldrich, D2926-10MG) were incubated with neutrophils at

37 ◦C, 5% CO2 for 30 minutes before adding stimuli. The plate was

imaged every 20 minutes with an Incucyte S3 Live-Cell Analysis System

(Sartorius) using the phase contrast and green fluorescent channels at a

10× objective lens. NETosis was analyzed by excluding objects smaller

than 30 μm2 in the phase channel and measuring the total area of the

green signal with Top-Hat for background correction and Edge Split off

(Sartorius).
2.5 | NETosis induction in whole blood

Twenty-five milliliters of whole blood was reoxygenated by tube

rolling at RT in 50 mL tubes. Periodically, oxygen saturation levels

were determined by deoxyhemoglobin (660 nm) and oxyhemoglobin

(940 nm) absorbance measurements. Oxygenated whole blood was

then treated with PMA, CI, LPS, physiological molecules (10 μg/mL LT-

α, 10 μg/mL C5a, and 10 μg/mL fMLP) or vehicle (PBS or dimethyl

sulfoxide) followed by inversion mixing. Two milliliters of treated

sample was aliquoted into low-binding tubes (Thermo Fisher Scientific,

90410) and incubated at 37 ◦C with rotation at 10 revolutions per

minute (RPM). Plasma was isolated by centrifugation (swinging
bucket) for 10 minutes at 1300g without brake at RT. Plasma fractions

were transferred and isolated, and nucleosomes were measured in

duplicate using the H3.1 Nu.Q NETs immunoassay (Belgian Volition).
2.6 | Screening

Whole blood screening candidates were selected based on possible

association with NETosis (Supplementary Table S1). Concentrations

were equivalent to or in excess of values used for in vitro stimulation.

Recombinant lyophilized proteins were resuspended using 0.1% (w/v)

human serum albumin (HSA; A9731, Sigma-Aldrich) in sterile water,

with further dilutions of reagents made using 0.1% HSA in PBS. Re-

agents were dispensed in plates (Corning, 3575) using the Mantis V3

Liquid Handler (Formulatrix) with silicon LV or PFE LV chips (233581

or 233129, Formulatrix). Wells were backfilled with appropriate sol-

vents (ethanol, dimethyl sulfoxide, or 0.1% HSA in PBS) such that the

concentration and volume of the vehicle were consistent across wells.

Plates contained 6 replicate wells of each of the following controls:

vehicle, PMA (50, 250, and 500 nM) randomly distributed across the

plate to assess assay performance. The factors contained within the

remaining wells were determined by the optimal Design of Experi-

ments (DOE) screening design computed using JMP V17.1 (JMP Sta-

tistical Discovery).
2.7 | Fluorescent plate assay

Fifty microliters of oxygenated whole blood containing 7.5 μM SYTOX

Green (Thermo Fisher Scientific, S7020) was dispensed across a pre-

pared 384-well fluorescent assay microplate using the Mantis Contin-

uous Flow Silicon Chip (Formulatrix, 233127). After dispensing, the

plate was sealed (Thermo Fisher Scientific, 235307) and mixed (orbital

shaking) at 1400 RPM for 10 seconds. Plates were then centrifuged at

1300g for 10 minutes at RT using a swinging bucket rotor without

braking. Centrifugedplateswerepreheated to37 ◦Conadry-heatblock

(Lonza, 25-038A) for 15 minutes prior to reading. Kinetic fluorescent

measurements were obtained using a SpectraMax iD5 Multi-Mode

Microplate Reader (Molecular Devices) (excitation, 510 nm; emission,

550 nm), top read, at 2-minute intervals for up to 24 hours.

For inhibition studies, ABAH, MeOSuc-AAPA-CMK (elastase

inhibitor II, Sigma-Aldrich, 324755), CI, GSK484 (Sigma-Aldrich, SML-

1658), DPI, Necrostatin-1 (Sigma-Aldrich, 480065), Caspase-3/7

Inhibitor I (Cayman Chemical, 14464), or vehicle were added to the

wells. Oxygenated whole blood was added to each well and mixed at

1400 RPM for 5 seconds, followed by RT incubation for 45 to 60

minutes. Vehicle, PMA, or physiological molecules (10 μg/mL LT-α

[PeproTech, 300-01B], 10 μg/mL C5a [PeproTech, 300-70], and 10 μg/

mL fMLP [Sigma-Aldrich, F3506]) were then dispensed into each well

and mixed at 1400 RPM for 5 seconds. The plate was sealed, and the

assay continued as described above.
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2.8 | MPO-DNA assay

MPO-DNA complexes were measured from isolated plasma, according

to Pieterse et al. [19].
2.9 | Screening design and statistical analysis

Optimal screening design was computed using JMP V17.1 custom

screening design, with all main effects and fourth-degree interactions

included, but assigned estimatibility to “if possible.” The number of runs

specified for eachplatewas set to 360with noadditional center points or

replicate runs. Relativefluorescenceunit (RFU) signalwasdown-sampled

into30-minute intervals byblock-wise averaging, followedby calculation

of the change in the down-sampled RFU values between 30-minute in-

tervals. These values were used for input into standard least squares

multivariate regression modeling using JMP V17.1, with the concentra-

tionofeachmolecule ineach treatmentbeing thedependent variable and

each change in RFU value at 30-minute intervals being the independent

variable. The effect of each factor was assessed by t-test to determine if

the predicted coefficient at any given period was non-0 and if the factor

was acting to increase or decrease signal at any given time. Factorswith a

significant non-0 effect on the signal and acted to increase signal over

time (P< .1) in one or both testeddonors for that screenwere selected to

move forward for additional screening.

Dose-response profiles for the 3-factor combination were charac-

terized by space-filling DOE (JMP V17.1). The selected design was

sphere-packing optimal with 88 different concentration combinations of

LT-α, C5a, and fMLP and tested in triplicate. The system’s dose-response

surface was generated using Gaussian process regression and Gaussian

correlation structure with nugget parameter estimation. Each individual

factor’s half maximal effective concentration (EC50) was obtained by

determining the log10 concentration at the signal half-max for each fac-

tor, given that the 2 other factors are at their maximal concentrations.

Assessment of inhibition for the biological factors was conducted

by subtracting the mean RFU value for biological factors and inhibitor

treatment with the mean RFU value for its respective inhibitor

treatment using the 30-minute block average at 6 hours into reading

the plate. The SD of both the biological factors with inhibitor treat-

ment and inhibitor treatment alone were propagated to the ΔRFU

value obtained. Comparison of the response of the biological factors

between the inhibitor vehicle treatment and inhibitor treatments was

performed using 1-way analysis of variance followed by Dunnett’s

multiple comparisons test using GraphPad Prism (version 10.1).
3 | RESULTS

3.1 | NETosis induction and real-time monitoring in

whole blood and isolated neutrophils

We set out to develop a more biologically relevant NETosis model

than isolated neutrophils. Our approach allows the investigation of
NETosis neutrophils in whole blood either in a low throughput,

Synthetic-Sepsis, or high-throughput screening approach

(Supplementary Figure S1A). We first validated our NET quantification

approach using extracellular DNA intercalation and fluorescence in a

classical isolated neutrophil model of NETosis. A dose-dependent in-

crease in DNA release measured by Cytotox Green was seen in

response to PMA using an Incucyte S3 incubated imaging platform

(Sartorius), with signal onset after 2 hours of treatment (Figure 1A).

Treatment with the MPO inhibitor, ABAH, substantially delayed the

onset of PMA-induced DNA release and reduced the overall level of

release, consistent with NETosis inhibition (Figure 1B). The results

were confirmed by fluorescent microscopy at 6 hours after treatment

(Supplementary Figure S1E). CI and LPS, established NETosis inducers,

also induced NETosis in isolated neutrophils in a dose-dependent

manner (Figure 1C, D).

To study NETs in a more biologically relevant system (ie, in the

presence of other blood proteins and cell types), we incubated whole

blood in K2-EDTA tubes from 2 healthy donors with PMA, CI, or LPS.

NETosis was quantified by nucleosome release, and H3.1 nucleosome

levels started to increase 3 hours after treatment with PMA

(Figure 1E), as did MPO-DNA (Figure 1F). Differential nucleosome

elevation was seen in both donors over the time course. Unlike in

isolated neutrophils where all 3 molecules induced NETosis, only

PMA-induced NETosis in whole blood in either donor (Figure 1G). This

unexpected finding suggests that neutrophils respond differently in

isolation than in whole blood.
3.2 | High-throughput model for NETosis induction

To identify physiologically relevant NETosis activators, we adapted

the model for high-throughput screening. As neutrophils are fragile,

we designed a rapid screening format with limited handling utilizing a

Mantis liquid dispenser (Formulatrix) to distribute molecules across a

384-well plate followed by whole blood containing SYTOX Green. The

plate was centrifuged to sediment erythrocytes, leaving an upper

plasma layer and buffy coat containing neutrophils at the interface

(Figure 2A). NET formation was measured from the top through the

plasma via intercalation and fluorescence of extracellular DNA using a

SpectraMax plate reader.

To evaluate consistency across the plate and limit potential arti-

facts (edge effects, temperature variation, and oxygenation), a series

of optimizations were performed across an entire 384 plate using 500

nM of PMA to induce NETosis (Figure 2B). Experimental parameters

were optimized to ensure that small changes in fluorescent intensity

at the onset of NETosis could be reliably detected. The time of

NETosis was calculated as the time at which the fluorescent signal

exceeded 3.3× the SD of a vehicle-treated control group. Assay

optimization focused on reducing the SD in the time of NETosis to ±5

minutes across the plate. We then performed a randomized PMA

titration across the plate and showed a dose-response curve of

NETosis induction (Figure 2C). Nucleosome release was measured in

plasma isolated from treated whole blood in parallel using the H3.1
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Nu.Q NETs assay (Volition), which showed the time course of nucle-

osome release followed the SYTOX Green signal (Figure 2D). In this

high-throughput induced NETosis model, we found that both CI and

LPS failed to induce NETosis (Figure 2E, F), reflecting the results seen

in whole blood (Figure 1G). MPO inhibition by ABAH had a modest

ability to delay the onset of NETosis (Figure 2G and Supplementary

Figure S2A), consistent with the inhibition of NETosis, as noted in

isolated neutrophils. Furthermore, treatment with the reactive oxygen

species (ROS) and nicotinamide adenine dinucleotide phosphate oxi-

dase inhibitor, DPI, showed inhibition of DNA release in both isolated

neutrophils and the high-throughput system (Supplementary

Figures S1D and S2B, respectively).
3.3 | Variability of NETosis profiles

The high-throughput NETosis model was used to screen candidate

NETosis regulators selected based on reported association with

NETosis or neutrophil biology (Supplementary Table S1). DOE was
performed to combine selected factors in an iterative screen to

identify the minimal candidate pool required to induce DNA release

(Figure 3A). Initially, 6 to 19 factors were combined into individual

wells, with each factor represented in approximately half of the wells.

Four distinct fluorescence patterns were observed following treat-

ment with the various combinations: no response, initial response with

early plateau, delayed response with continued gradual increase, and

initial response with secondary response with continued increase

(Figure 3B). To assess the relative contribution of each factor to the

fluorescence signal at each time point, we down-sampled by block

averaging into 30-minute intervals, calculated the first derivative, and

performed standard least squares multivariate regression modeling

(Figure 3C). The contribution of each factor across each of the wells

was used to determine the potential extent to which the specific

factor contributed to the signal. Figure 3D shows examples of 4

observed patterns: C5a and TNF-α contributed to a rapid onset of

DNA release, with TNF-α having a secondary protracted effect on the

system. Interleukin-5 did not appear to have a significant impact on

fluorescence signal and Interleukin-1β appeared to reduce the
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vehicle control (gray ▾). (G) Time course of neutrophil extracellular trap activation with PMA alone or following preincubation with 500 μM of

the myeloperoxidase inhibitor (4-aminobenzoic acid hydrazide, ABAH) for 45 minutes before the addition of 500 PMA, with ABAH (gray ⋅) or
vehicle (black▾) alone as controls.
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fluorescence signal, indicating potential inhibition or buffering ca-

pacity. We performed 2 rounds of screening in blood from 2 different

healthy donors (n = 4) and found that TNF-α, LT-α, interferon-gamma

(IFN-γ), granulocyte macrophage colony stimulating factor (GM-CSF),

leukotriene B4 (LTB4), C5a, and ferritin were predicted to consistently

contribute to increased SYTOX Green signal across donors, whereas

LPS and fMLP only contributed to 1 of the 2 screens (Figure 3E).

Molecules with negative or no effect on signal were removed for

subsequent NETosis inducer screens. Ferritin was observed to

consistently contribute to an increase in signal but was removed from

subsequent screens as it was horse-derived.
3.4 | Biological relevant NETosis induction

consistency across donors

Levels of endogenous cytokines vary across individuals and in

response to environmental stimuli, contributing to natural vari-

ability in innate immune response. Interdonor variability of NETosis

induction was evaluated using the 8 selected factors. To normalize

the effect each combination of factors had across donors, we per-

formed a Boolean transformation of the first derivative change in

RFU over the time course with a threshold cutoff at 3× the SD of the

background signal (Figure 4A). We tested combinations of the
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selected 8 factors (TNF-α, LT-α, IFN-γ, GM-CSF LTB4, C5a, LPS, and

fMLP) in 6 donors and found that the signal consistently increased

across donors with more factors (Figure 4B). Four factors increased

NETosis in most of the 6 donors tested with 2 distinct patterns:

early onset between 30 minutes and 2 hours, followed by a later

increase after 3 hours. Female donors were generally less respon-

sive than males, especially with earlier onset NETosis (Figure 4C).

Either TNF-α or LT-α was required for consistent increase in signal

across donors. In their absence, the remaining 6 compounds failed to

induce a consistent signal (Figure 4D). Interestingly, C5a or LPS

appeared to be critical for the early onset signal (30 minutes to 2

hours; Figure 4D). To investigate the relative role of each factor, we

selected a pool of 5 factors (LT-α, GM-CSF, C5a, LPS, and fMLP),
which was a pool containing the fewest factors that induced early,

but not late, DNA release in all donors tested, hypothesizing that

the secondary response could reflect mechanisms other than

NETosis. The impact of each factor in combination with the other

factors across the 6 donors is shown in Figure 4E. These results

highlighted differences between male and female donors; for

example, it appeared GM-CSF and LPS were less important for the

early response in males compared with females and that male do-

nors were more likely to undergo NETosis with less stimulation

compared with the female donors with the 5-factor pool. TNF-α was

also tested in place of LT-α, and there was a signal in both early and

late induction, so it was not used in subsequent pools

(Supplementary Figure S3).
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3.5 | Minimal factors required for NETosis induction

To determine whether individual donors responded to the same

combination of compounds over time, we had 2 donors undergo

multiple blood draws over a month’s period and found general con-

sistency for NETosis initiation with the 5-factor pool (LT-α, GM-CSF,

C5a, LPS, and fMLP) across and within donors, with a pool of LT-α,

C5a, and fMLP giving the most consistent result with the fewest

number of factors (Figure 5A). Variability was reduced as more factors

were utilized; however, we observed a possible set of 3 factors (LT-α,

C5a, and fMLP) that had consistency and similar results as those pools
that included either GM-CSF and/or LPS. Due to this, space-filling

DOE and Gaussian process regression were used to evaluate the

concentration dependence of each factor in blood samples from 2

healthy donors (Figure 5B). We found that GM-CSF did not play a

significant role in either donor, while LPS appeared to decrease the

overall observed signal in a dose-dependent manner (Figure 5B and

Supplementary Figure S4). Consequently, we removed GM-CSF and

LPS from the pool to generate the minimal combination of factors

required to induce an increase in NETosis.

All 3 remaining factors were required to generate an increase in

DNA release associated with the SYTOX Green signal (Figure 5C),
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with the EC50 of C5a and fMLP being within 3× to 4× published

values for neutrophil depolarization and ROS production, respec-

tively, and the EC50 for LT-α being lower than what has been reported

for ROS production (Table) [20–22]. To confirm that the signal we

were seeing upon treatment with these natural triggers was a result
of NETosis, we treated whole blood with the optimized concentra-

tions of LT-α, C5a, and fMLP, along with a variety of inhibitors. We

showed a significant decrease in signal when inhibitors targeting

neutrophil elastase II, peptidylarginine deiminase, peptidylarginine

deiminase 4, and DPI were included (Figure 5D). However, there was



T AB L E Summary of EC50 values reported in the literature and identified in the current study.

Comparison of literature EC50 values and experimentally determined EC50 values.

Factor Source Literature EC50 values Experimental EC50 values

LT-α Isolated neutrophils ROS production [20] 12 ng/mL 0.3 ng/mL

C5a Isolated neutrophils depolarization [21] 56 ng/mL 200 ng/mL

fMLP Isolated neutrophils ROS production [22] 22 ng/mL 60 ng/mL

EC50, half maximal effective concentration; LT-α, lymphotoxin-α; C5a, complement component 5a; fMLP, N-formyl-Met-Leu-Phe; ROS, reactive oxygen

species.
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no change in signal when an apoptosis inhibitor (caspase 3/7 inhibitor

I) or necroptosis inhibitor (necrostatin-1) was included. In addition, we

show that following treatment with the 3-factor pool, there was an

increase in H3.1 nucleosomes (Figure 5E), H3R8 citrulline (Figure 5F),

and MPO-DNA (Figure 5G), further supporting NETosis induction.
4 | DISCUSSION

Physiologically relevant models mimicking endogenous NETosis have

the potential to enable mechanistic investigation of the complex

signaling underlying NETosis activation. Our representative ex vivo

model offers the opportunity for screening therapeutic interventions

under disease mimetic conditions, which reflect underlying conditions

that may predispose patients to adverse outcomes. To our knowledge,

we show for the first time the ex vivo induction and real-time kinetic

readout of NETosis using naturally occurring molecules in a whole

blood system. We found that activation with TNF-α or LT-α was

required for rapid onset of NETosis, highlighting the importance of

these molecules in sepsis and other autoimmune diseases. Indeed,

TNF-α has been shown to be elevated in sepsis and is a putative

therapeutic target [23].

Interestingly, we found that CI and LPS showed a differential

ability to induce NETosis in whole blood compared with isolated

neutrophils, which could be due to the presence of an additional cell

type or factor present in whole blood and reflects the complexity of

the whole blood model compared with isolated neutrophils. Mol et al.

[15] previously reported that treating neutrophils with pairs of factors

similar to what we identified (GM-CSF, fMLP, TNF, and LPS) resulted

in neutrophils displaying a variety of neutrophil-associated behaviors

(eg, ROS production, degranulation, and phagocytosis) but they were

not able to induce NETosis. Our ability to induce NETosis in our ex

vivo model using no less than 3 different factors demonstrates the

complex signaling needed for NETosis to occur and suggests that

there are components present in whole blood that are important in

NETosis regulation. Whole blood has a variety of proteins and other

cell types (eg, platelets and macrophages) that are known to help

regulate NETosis, and additional work is necessary to determine

whether these cells play a role in the NETosis we observe in our

ex vivo model.

NETs play a critical role as part of the innate immune response

to infection, immobilizing pathogens to prevent dissemination and
clearing them from circulation [24]. However, excessive NETosis can

be pathogenic and lead to host-directed bystander effects and

thrombosis [25]. Thus, NETosis can be both beneficial and detri-

mental [25]. The differential time courses and magnitudes of NETosis

seen in our ex vivo whole blood model in response to specific com-

binations of proinflammatory compounds may be correlated to

beneficial vs pathogenic NETosis (Figure 3B). It is possible that the

compound combinations in which the amount of NETosis was mini-

mal represent the beneficial NETosis, whereas conditions that led to

higher release may reflect pathogenic NETosis. Furthermore, some

combinations trigger a biphasic release pattern with a moderate

early minimal response followed by a secondary exacerbated

response, which could be reflective of a positive feedback loop in

which nucleosomes released from the early NETs further stimulate

additional NETosis [26]. DNA and nucleosome release are markers of

NETosis but can also measure extracellular traps from other immune

cells like eosinophils [27,28]. We show that MPO and H3R8 citrulline

are expressed following NETosis induction, but future studies will

address whether different combinations of factors trigger different

types of extracellular trap formation or from different cell pop-

ulations. Differentiating these patterns provides an opportunity for

biomarker identification as well as therapeutic intervention for

future study.

In our initial screens, we found that pools with molecules that

interact with similar cell-surface markers/signaling cascades induced

consistent responses across donors, which suggested a potential

convergence of required signaling pathways. At least 3 naturally

occurring factors in combination (LT-α, fMLP, and C5a) were neces-

sary to consistently induce NETosis in our system, indicating a po-

tential requirement of the activation of TNF receptor 1, TNF receptor

2, or LT-β receptors for NETosis to occur [29]. NETosis induction did

not occur in the absence of TNF-α or LT-α, underlying the potentially

significant roles these factors play in inflammatory disease, and this

suggests an underlying master regulatory mechanism such that

certain factors are essential but not individually sufficient to trigger

NETosis.

These findings emphasize the importance of expanding the un-

derstanding of neutrophil physiology in a biologically relevant context.

Physiological triggers of NETosis could be used to better understand

NET-associated disease pathology, risk factors, and potential thera-

peutic targets, providing novel strategies for disease intervention and

treatment. Our novel ex vivo NETosis approach has the potential to be
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used for screening drug candidates as inhibitors and inadvertent ac-

tivators of NETosis, and through a comprehensive exploration of hu-

man NETosis, we can take significant strides toward mitigating the

devastating impact of sepsis on global healthcare.
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