

Circulating H3K27me3 modified nucleosomes as a biomarker to monitor anti EZH2-based treatment in advanced solid tumour patients: translational analyses from CAIRE trial

Francesca Salani^{1,2,3}, Mark Eccleston⁴, Lola-Jade Palmieri⁵, Simon Pernot⁶, Sophie Cousin³, Gianluca Masi², Francesco Crea¹, Antoine Italiano⁷ ¹ Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK; ²Scuola Superiore Sant'Anna, Pisa, Italy; ³Translational Medicine Department, Pisa University, Italy; ⁴ Belgian Volition SRL; ⁵Department of Medicine, Institut Bergonié, Bordeaux, France; ⁶Department of Medical Oncology, Institut Bergonié, Bordeaux, France; ⁷Faculty of Medicine, University of Bordeaux, Bordeaux, France

Background

CAIRE (NCT04705818)

Phase 2 multi-cohort study which assessed activity of combined anti-EZH2 **tazemetostat**(T, 800mgx 2/day) and anti-PDL1 durvalumab (D, 1120 mg q3 weeks) (T+D) across different pretreated solid

EZH2 catalyses tri-methylation of Lysine 27 (K27me3) on histone 3 (H3, H3K27me3).

Circulating, cell-free H3K27me3 (cfH3K27me3) modified nucleosomes are thus a **potential** pharmacodynamic biomarker for Tazometostat activity.

We aimed to test if **Nu.Q** [®]-H3K27me3 levels normalised to total H3.1 variant nucleosomes served as a pharmacodynamic biomarker for anti-EZH2 treatment

Methods

Circulating cfH3K27me3 modified, and histone H3.1 variant, nucleosomes were quantified in patients with pancreatic adenocarcinoma (PDAC), colorectal cancer (CRC) and soft-tissue sarcomas (STS) T+D treated patients using Nu.Q[®]-H3K27me3 and Nu.Q[®]-H3.1 chemiluminescent immunoassays (Belgian Volition SPRL).

K2EDTA Plasma was collected at baseline (cycle 1 day 1, C1D1), cycle 2 day 1 (C2D1), cycle 3 day 1 (C3D1) and end of treatment (EOT).

Nucleosomal **[H3.1]** was significantly (*) higher at **EOT** than any previous timepoint

Results

CAIRE safety and activity stage-1 cohort: 9 PDAC, 16 CRC, 13 STS assessed for activity. Signs of activity have been seen for each cohort, thus the study has proceeded to stage-2

191/197 patients were evaluable for normalised Nu.Q[®]-H3K27me3; [range]: 0.025 - 1.541.

STS

The normalised Nu.Q[®]-H3K27me3 C1D1 median value (0.56 +/- 0.22) was significantly higher than C2D1 (0.31 +/- 0.19, p: e -12), C3D1 (0.31 +/- 0.18, p: e -12) and EOT ones (0.28 +/- 0.14, p: 0.001).

Normalised Nu.Q[®]-H3K27me3 evaluation in paired-samples

normalised Nu.Q[®]-H3K27me3 was significantly (*) higher at C1 than later timepoints

4309

Conclusions

Total nucleosomal **H3.1** represents a surrogate of **disease burden** in metastatic PDAC, MSS-CRC and STS, as noted previously in haematological malignancies.

We show for the first time that the proportion of **circulating** nucleosomal H3K27me3 significantly **decreases** during Tazametostat treatment in metastatic solid tumour patients, irrespective of the primary disease site, supporting its potential role as a pharmacodynamic biomarker for EZH2 inhibition.

Acknowledgements

HPTMs analyses were conducted by Volition; CAIRE was conducted with the support of Epizyme and AstraZeneca; HEAL ITALIA consortium supported first author activity.

Project's partners

Institut Bergonié, Bordeaux, France LHCS, The Open University, Milton Keynes, UK Belgian Volition SPRL, Belgium Sant'Anna School of Advanced Studies and UniPi, Italy

francesca.salani@unipi.it