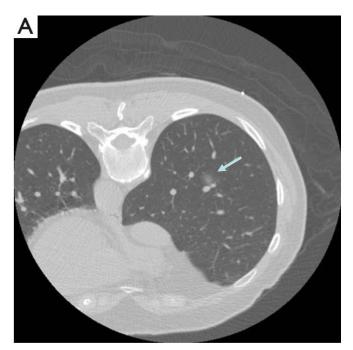
Circulating Nucleosomes in Lung Cancer Diagnosis following low-dose computed tomography

Dr Tung-Ming Tsai

Department of Surgery,

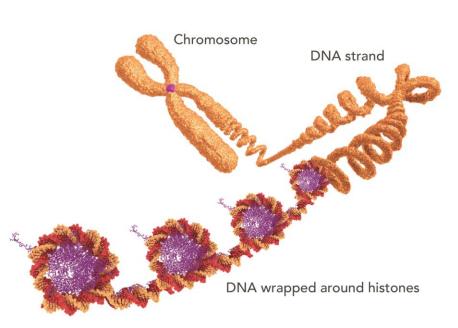
National Taiwan University Hospital


DISCLOSURES

Commercial Interest	Relationship(s)			

This work was done in collaboration with the company Volition

Lung Cancer Diagnosis: How to better discriminate between malignant and non-malignant nodules?



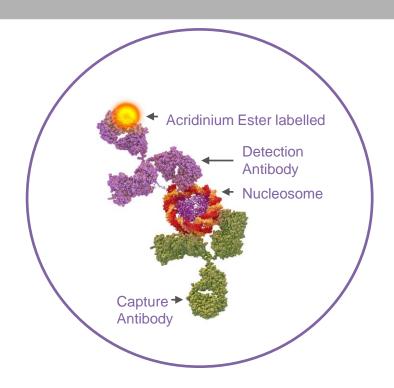
Tsai et al., Ann Transl Med 2019;7(2):31

- Low-Dose Computed tomography (LDCT) is the widely accepted standard for screening of individuals at high risk of lung cancer (LC).
- However, LDCT has several limitations including the high prevalence of non-malignant nodules detected leading to overdiagnosis, the potential harms of cumulative radiation dose and poor adherence to recommended follow-up
- Therefore, a novel blood-based tests could offer a simple follow confirmation approach to help to discriminate between lung cancer and nonmalignant nodules.

Circulating Nucleosomes and Epigenetic Modifications

- In the nucleus of eukaryotic cells, DNA is wrapped around eight histone proteins to form the fundamental repeating unit of chromatin called the nucleosome.
- Each nucleosome octamer is composed by two copies of each core histone protein: H2A, H2B, H3 and H4.
- All core histones could also have a variety of epigenetic modification: histone posttranslational modifications (PTMs).
- Cancer leads to cell death which results in fragmentation and release of nucleosomes into the blood.

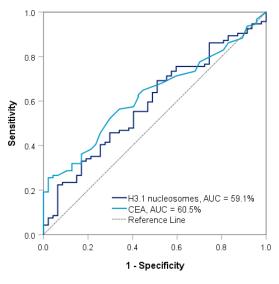
Methods: Prospective collection of 220 patients:



- **220 patients referred for CT scans** at National Taiwan University Hospital.
- The patients were later confirmed to have either a Lung Cancer (LC), or non-malignant nodules (Benign Nodule (BN)) or no-nodules.
- Whole blood was collected in EDTA plasma tube
- Interim report on 1,200 patient study

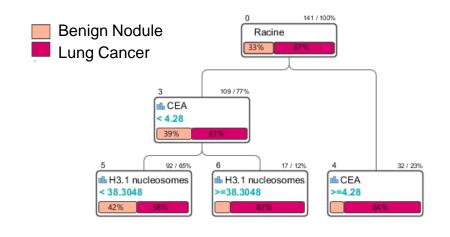
Diagnosis	Patients (n)	Age (median, IQR)	Male:Female	Smoker:Nonsmoker	Family History: No Family History
Lung Cancer	100	62 (53-70)	39:61	20:80	32:68
Stage 0-I	67	60 (50-67)	16:51	4:63	23:44
Stage II	3	66 (52-68)	2:1	1:2	1:2
Stage III	15	69 (55-73)	10:5	9:6	5:10
Stage IV	15	66 (55-71)	11:4	6:9	3:12
Benign Nodules	50	58 (50-66)	20:30	9:41	15:35
Healthy	70	57 (45-66)	23:47	12:58	32:38

Methods: Nu.Q™ Immunoassays


- Volition Nu.Q™ immunoassays target nucleosomes in blood containing different variant or histone post-translational modifications (PTMs) and measure their circulating levels.
- sandwich immunoassays are based on magnetic beads and chemiluminescence technology and were performed on an automated platform
- Levels of circulating H3.1 nucleosomes (Nu.Q™ H3.1) or methylated lysine 27 of histone H3 (Nu.Q™ H3K27Me3) or methylated lysine 36 of histone H3 (Nu.Q™ H3K36Me3) were evaluated

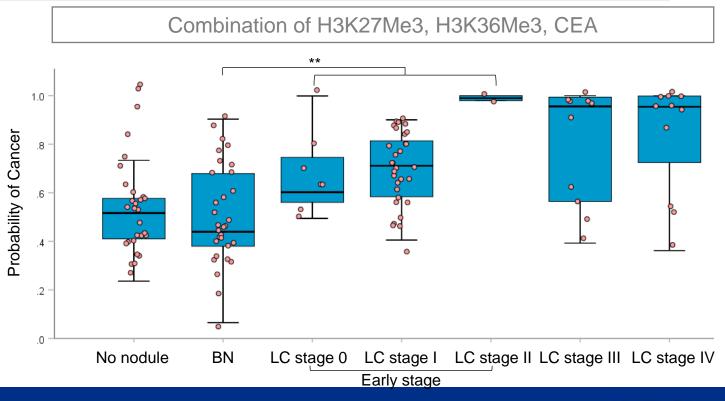
Combination of circulating H3.1 nucleosomes and CEA discriminates between Lung Cancer and Benign Nodule

ROC curve individual biomarker: circulating nucleosomes and CEA

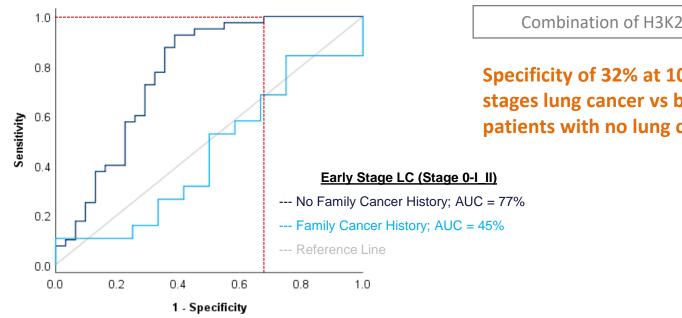


Sensitivity at 90% specificity:

H3.1: 23%


CEA: 26%

Sensitivity of 41% at 90% specificity


Use of Histone PTMs dramatically improves the detection of early stage (0,I,II) non-familial Lung Cancer sub-group

Potential *rule-out* method to reduce the number of unnecessary biopsy or repeated scan

Combination of H3K27Me3, H3K36Me3, CEA

Specificity of 32% at 100% sensitivity for early stages lung cancer vs benign nodule for patients with no lung cancer family history

Take-Home Message

 LD-CT scan detects pulmonary nodules, but it is known to not be specific.

Data from this interim analysis suggest that Nucleosomes and Histone PTMs may:

- discriminate between benign nodule vs early-stage LC from nonfamilial LC history patients.
- provide a non-invasive blood test to help rule-out lung cancer in cases of non-malignant nodules to reduce unnecessary biopsy and the frequency of radiation exposure.

Coauthors:

Tung-Ming Tsai^{1,2}, Dorian Pamart³, Nathalie Hardat³, Marielle Herzog³, Mong-Wei Lin¹, Hsao-Hsun Hsu¹, and Jin-Shing Chen^{1,2}

- 1 Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- 2. Department of Surgical Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- 3. Belgian Volition, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium. www.volitionrx.com