

Differentiation of Malignant and Benign Lung Nodules using Epigenetically Modified Nucleosomes in Plasma

Pei-Hsing Chen, MD National Taiwan University Hospital, Taiwan

October 22nd, 2023

DECLARATION OF INTERESTS

Pei-Hsing Chen

This research was conducted in collaboration with Belgian Volition SRL. The results presented here were partially funded by a research grant from Belgian Volition SRL.

Introduction

- In Taiwan, the initiation of the LDCT screening program led to an increase in the detection of nodules.

- An unmet clinical need for accurate noninvasive tests to differentiate between malignant and benign nodules following LDCT screening.

- Novel blood-based tests could provide a straightforward distinction between lung cancer and non-malignant nodules.

Epigenetic biomarkers: a valuable tool from target identification to validation in clinical studies

Measuring and monitoring nucleosome levels and modifications in circulating blood has the potential to aid diagnosis, prognosis and monitoring of lung cancer

• Methylated lysine 36 of histone H3 (Nu.Q[®] H3K36Me3)

Pei-Hsing Chen, MD

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Statistical model for differentiation

Logistic regression model for simple algorithm Based on histone modifications, Including H3K27Me3/H3K36Me3 and the H3.1 histone isoform 561 (70%) training / 245 (30%) validation

Combined model from training set : subgroup analysis

100

90 -

80

60 -

50 -

40 -

Nodule component

tivity% 70 - 100

90 ·

≥ 3 < 3

Nodule Size (cm)

Sensitivity at 80% Specificity

100

90

80

70

60

≥1 < 1

Nodule Size (cm)

å 50

Component

Performance is superior in part-solid and non-solid lesions

۰ Size

> Performance was maintained with a cutoff of 3 cm, but diminished with a cutoff of 1 cm, though it remained satisfactory for differentiating small nodules.

Conclusions

- Epigenetic features of nucleosomes in blood plasma offer potential for identifying cancer/pre-cancer, potentially reducing the false-positive rates of LDCT.
- Epigenetic features of nucleosomes allow for precise differentiation between cancer/pre-cancer and benign nodules using a combined logistic model, particularly for tumors with non-solid components.
- Epigenetic features of nucleosomes demonstrated superior performance in larger tumors, yet maintained satisfactory results for nodules smaller than 1cm.

Acknowledgment

Research Team Members and Co-authors

Tung-Ming Tsai, Dorian Pamart, Tom Bygott, Marielle Herzog, Jake Micallef, Jin-Shing Chen

Pei-Hsing Chen b96401034@ntu.edu.tw

