Evaluation and comparison of NETosis biomarkers in sepsis and COVID-19 patients

Laure Morimont, 1, 2, Mélanie Dechamps, 1, 3, Clara David, 1, Céline Bouvy, 1, Constantin Gillot, 1, Hélène Haguier, 1, Julien Favresse, 1, Lorain Ronvaux, 1, 2, Julie Candraci, 1, Marielle Heremans, 1, Pierre-François Laterre, 1, Julien de Poortere, 1, Sandrine Hamon, 4, Christophe Beduley, 5, and Jonathan Douxfils, 1

Qualiblood (i.e., Research and Development Department, Namur, Belgium; Department of Pharmacy, Namur Thrombosis and Hemostasis Center, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium, Cardiovascular Intensive Care, Cliniques Universitaires St Luc, Brussels, Belgium; Pôle de Recherche Cardiovasculaire, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain, Brussels, Belgium; 1 Belgium Vitoion SRL, Parc Scientifique de Walaye, Ixelles, Belgium; 4 Division of Cardiology, Cliniques Universitaires St Luc, Brussels, Belgium)

INTRODUCTION

- Neutrophil extracellular traps (NETs) are large, extracellular, web-like structures composed of cytotoxic and granule proteins that are assembled on a scaffold of decondensed chromatin.
- The composition of NETs varies depending on the stimulus.
- Critical COVID-19 patients differ from septic shock at the admission in the ICU by presenting higher levels of IL-1β and TNF-α, and lower levels of IL-10 and IL-6, which septic shock display higher levels of IL-6, IL-8, and a more significant myeloid response (including triggering receptors expressed on myeloid cells-1 (TREM-1) and IL-1R.

AIM

While both conditions have been linked to excessive NETosis, the direct comparison of NETosis biomarkers including nucleosomes in these two infectious conditions has not been described before.

METHOD

- 48 controls, 22 COVID-19 patients and 48 sepsis patients were included.
- Patients with critical COVID-19 who were admitted to the ICU for moderate or severe acute respiratory distress syn-drome (ARDS) due to SARS-COV-2 infection were included within five days of admission. ARDS was diagnosed according to the Berlin definition, and SARS-COV-2 infection was demonstrated by real-time reverse transcription PCR on nasopharyngeal swabs.
- Septic shock was defined according to the Sepsis-3 definition as sepsis with vasopressor therapy needed to elevate the mean arterial pressure ≥ 65 mmHg and lactate levels > 2 mmol/L despite adequate fluid resuscitation of 30 ml/kg of intravenous crystalloids within 6 hours. Patients with septic shock admitted to the ICU were included within two days of admission.
- Control patients with matched age, gender, and comorbidities were recruited at a central laboratory consultation.
- Nucleosomes containing histone H3.1 or containing citrullinated nucleosome histone H3R8 were measured using the NuQ® H3.1 and NuQ® H3R8 Cit ELISA assays from Human (Belgian Volition). Free citrullinated histone H3 (K3-H3) (citrullinated at R2, R8 and R17) were measured using the Cayman citrullinated histone H3 ELISA kit (Cayman Chemical). Neutrophil elastase and MPO were measured using the Human Neutrophil Elastase/Elastase 2 Direct ELISA and the Human Myeloperoxidase Quantikine ELISA Kit (R&D systems). Cytokines and chemokines were measured using the Bio-Plex Pro Human Cytokine 27-plex Assay and ICAM-1 and VCAM-1 were measured by mixing Bio-Plex Pro Human cytokines ICAM-1 and VCAM-1 sets (ICAM-VCAM) on a Bio-Plex 200 (Bio-Rad Laboratories N.V.).

RESULTS

Study population

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control n=16</th>
<th>COVID n=22</th>
<th>Sepsis n=48</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophil elastase (EU/L)</td>
<td>160±27</td>
<td>204±56</td>
<td>208±53</td>
<td>0.30</td>
</tr>
<tr>
<td>Neutrophil myeloperoxidase (mmol/L)</td>
<td>8.0±1.6</td>
<td>8.0±2.5</td>
<td>8.0±2.5</td>
<td>0.63</td>
</tr>
<tr>
<td>Nucleosomes histones H3.1</td>
<td>Not reported</td>
<td>19.9±4.4</td>
<td>22.1±6.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Nucleosomes histones H3R8</td>
<td>Not reported</td>
<td>23.1±5.4</td>
<td>23.1±5.4</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Levels of circulating nucleosomes and neutrophil activation biomarkers in control, septic shock and critical COVID-19 populations

Figure 1: Nucleosomes, NE, HE and MPO were compared. Results were expressed as absolute value or normalised to neutrophil level for each individual. All markers were significantly different in septic shock compared to COVID-19. Significant differences were observed in critical COVID-19 and septic shock patients. **Present** and **Bold** indicate significant differences (p<0.05) from COVID-19. Circulating nucleosomes and cytokines were measured using different assays. Squares represent patients with a thrombocytopenic event and a significant neutrophil response demonstrated during the time. **** represents p-value of 0.0001 < p < 0.0005 and < 0.00001. **p-value**. Only differences which are statistically significant are reported. Some parameters were not available in all patients (nC-reactive protein, neutrophil count and MPO in septic patients regarding NE measurements).

CONCLUSIONS

- Circulating H3.1-nucleosomes and Cit-H3R8-nucleosomes appear to be interesting markers of global cell death and neutrophil activation when combined.
- H3.1-nucleosomes levels permit the evaluation of disease severity and differ between critical COVID-19 and septic shock patients reflecting two potential distinct pathological processes in these ARDS conditions.
- Normalization of H3.1-nucleosomes on the neutrophil count permit to better discriminate these different populations, reflecting the higher contribution of neutrophils to generate nucleosomes in septic shock patients.
- Further studies are required to confirm if measurement of nucleosomes and citrullinated nucleosomes may predict disease severity and help in categorizing patients at early stage of the disease.

ACKNOWLEDGEMENTS

The authors would like to thank the technical teams Qualiblood and the Cliniques Universitaires Saint-Luc for performing the analyses and collecting the samples.

REFERENCES

CONTACT

[+32 8144.49.52](tel:+32%208144.49.52)
Rue du Séminaire 20a, 5000 Namur (BE)